Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Chan KG, Sulaiman J, Yong DA, Tee KK, Yin WF, Priya K
    Genome Announc, 2015;3(5).
    PMID: 26404582 DOI: 10.1128/genomeA.01097-15
    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities.
  2. Cheong HT, Ng KT, Ong LY, Takebe Y, Chan KG, Koh C, et al.
    Genome Announc, 2015;3(6).
    PMID: 26543107 DOI: 10.1128/genomeA.01220-15
    Three strains of HIV-1 unique recombinant forms (URFs) descended from subtypes B, B', and CRF01_AE were identified among people who inject drugs in Kuala Lumpur, Malaysia. These three URFs shared a common recombination breakpoint in the reverse transcriptase region, indicating frequent linkage within the drug-injecting networks in Malaysia.
  3. Chan KG, Yin WF, Tee KK, Chang CY, Priya K
    Genome Announc, 2015;3(3).
    PMID: 26021935 DOI: 10.1128/genomeA.00565-15
    We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate.
  4. Chan KG, Ng KT, Pang YK, Chong TM, Kamarulzaman A, Yin WF, et al.
    Genome Announc, 2015;3(3).
    PMID: 26021924 DOI: 10.1128/genomeA.00541-15
    Streptococcus parasanguinis causes invasive diseases. However, the mechanism by which it causes disease remains unclear. Here, we describe the complete genome sequence of S. parasanguinis C1A, isolated from a patient diagnosed with an acute exacerbation of chronic obstructive pulmonary disease. Several genes that might be associated with pathogenesis are also described.
  5. Tee KK, Bon AH, Chow WZ, Ng KT, Chan KG, Kamarulzaman A, et al.
    Genome Announc, 2017 Jun 29;5(26).
    PMID: 28663289 DOI: 10.1128/genomeA.00459-17
    We report here the first HIV-1 circulating recombinant form (CRF) complex identified among the blood donors in Malaysia. The CRF77_cpx mosaic genome consists of parental subtypes B', C, and CRF01_AE and is structurally related to CRF07_BC. The identification of CRF77_cpx underlines the genetic complexity and mobility of HIV-1 among the blood donors.
  6. Ng CK, How KY, Tee KK, Chan KG
    Genes (Basel), 2019 04 08;10(4).
    PMID: 30965610 DOI: 10.3390/genes10040282
    Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
  7. Kher HL, Krishnan T, Letchumanan V, Hong KW, How KY, Lee LH, et al.
    Gene, 2019 Feb 05;684:58-69.
    PMID: 30321658 DOI: 10.1016/j.gene.2018.10.031
    In the phylum of Proteobacteria, quorum sensing (QS) system is widely driven by synthesis and response of N-acyl homoserine lactone (AHL) signalling molecules. AHL is synthesized by LuxI homologue and sensed by LuxR homologue. Once the AHL concentration achieves a threshold level, it triggers the regulation of target genes. In this study, QS activity of Citrobacter amalonaticus strain YG6 which was isolated from clams was investigated. In order to characterise luxI/R homologues, the genome of C. amalonaticus strain YG6 (4.95 Mbp in size) was sequenced using Illumina MiSeq sequencer. Through in silico analysis, a pair of canonical luxI/R homologues and an orphan luxR homologue were identified and designated as camI, camR, and camR2, respectively. A putative lux box was identified at the upstream of camI. The camI gene was cloned and overexpressed in E. coli BL21 (DE3)pLysS. High-resolution triple quadrupole liquid chromatography mass spectrometry (LC-MS/MS) analysis verified that the CamI is a functional AHL synthase which produced multiple AHL species, namely N‑butyryl‑l‑homoserine lactone (C4-HSL), N‑hexanoyl‑l‑homoserine lactone (C6-HSL), N‑octanoyl‑l‑homoserine lactone (C8-HSL), N‑tetradecanoyl‑l‑homoserine lactone (C14-HSL) and N‑hexadecanoyl‑l‑homoserine lactone (C16-HSL) in C. amalonaticus strain YG6 and camI gene in recombinant E. coli BL21(DE3)pLysS. To our best knowledge, this is the first functional study report of camI as well as the first report describing the production of C14-HSL by C. amalonaticus.
  8. Md Nadzri MN, Md Zamri ASS, Singh S, Sumarni MG, Lai CH, Tan CV, et al.
    Front Public Health, 2024;12:1289622.
    PMID: 38544725 DOI: 10.3389/fpubh.2024.1289622
    INTRODUCTION: Since the COVID-19 pandemic began, it has spread rapidly across the world and has resulted in recurrent outbreaks. This study aims to describe the COVID-19 epidemiology in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate for each outbreak from the beginning of the pandemic in 2020 till endemicity of COVID-19 in 2022 in Malaysia.

    METHODS: Data was sourced from the GitHub repository and the Ministry of Health's official COVID-19 website. The study period was from the beginning of the outbreak in Malaysia, which began during Epidemiological Week (Ep Wk) 4 in 2020, to the last Ep Wk 18 in 2022. Data were aggregated by Ep Wk and analyzed in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate by years (2020 and 2022) and for each outbreak of COVID-19.

    RESULTS: A total of 4,456,736 cases, 35,579 deaths and 58,906,954 COVID-19 tests were reported for the period from 2020 to 2022. The COVID-19 incidence rate, death rate, CFR and test positivity rate were reported at 1.085 and 0.009 per 1,000 populations, 0.80 and 7.57%, respectively, for the period from 2020 to 2022. Higher cases, deaths, testing, incidence/death rate, CFR and test positivity rates were reported in 2021 and during the Delta outbreak. This is evident by the highest number of COVID-19 cases, ICU admissions, ventilatory requirements and deaths observed during the Delta outbreak.

    CONCLUSION: The Delta outbreak was the most severe compared to other outbreaks in Malaysia's study period. In addition, this study provides evidence that outbreaks of COVID-19, which are caused by highly virulent and transmissible variants, tend to be more severe and devastating if these outbreaks are not controlled early on. Therefore, close monitoring of key epidemiological indicators, as reported in this study, is essential in the control and management of future COVID-19 outbreaks in Malaysia.

  9. Yong D, Tee KK, Yin WF, Chan KG
    Front Microbiol, 2016;7:1606.
    PMID: 27790203
    To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572(T) (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570(T) (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535(T) (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens.
  10. Low WF, Ngeow YF, Chook JB, Tee KK, Ong SK, Peh SC, et al.
    Expert Rev Mol Med, 2022 Nov 16;25:e11.
    PMID: 36380484 DOI: 10.1017/erm.2022.38
    Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.
  11. Lim MC, Singh S, Lai CH, Gill BS, Kamarudin MK, Md Zamri ASS, et al.
    Epidemiol Health, 2023;45:e2023093.
    PMID: 37905314 DOI: 10.4178/epih.e2023093
    OBJECTIVES: This study aimed to develop susceptible-exposed-infectious-recovered-vaccinated (SEIRV) models to examine the effects of vaccination on coronavirus disease 2019 (COVID-19) case trends in Malaysia during Phase 3 of the National COVID-19 Immunization Program amidst the Delta outbreak.

    METHODS: SEIRV models were developed and validated using COVID-19 case and vaccination data from the Ministry of Health, Malaysia, from June 21, 2021 to July 21, 2021 to generate forecasts of COVID-19 cases from July 22, 2021 to December 31, 2021. Three scenarios were examined to measure the effects of vaccination on COVID-19 case trends. Scenarios 1 and 2 represented the trends taking into account the earliest and latest possible times of achieving full vaccination for 80% of the adult population by October 31, 2021 and December 31, 2021, respectively. Scenario 3 described a scenario without vaccination for comparison.

    RESULTS: In scenario 1, forecasted cases peaked on August 28, 2021, which was close to the peak of observed cases on August 26, 2021. The observed peak was 20.27% higher than in scenario 1 and 10.37% lower than in scenario 2. The cumulative observed cases from July 22, 2021 to December 31, 2021 were 13.29% higher than in scenario 1 and 55.19% lower than in scenario 2. The daily COVID-19 case trends closely mirrored the forecast of COVID-19 cases in scenario 1 (best-case scenario).

    CONCLUSIONS: Our study demonstrated that COVID-19 vaccination reduced COVID-19 case trends during the Delta outbreak. The compartmental models developed assisted in the management and control of the COVID-19 pandemic in Malaysia.

  12. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
  13. Ng KT, Ng KY, Chen JH, Ng OT, Kamarulzaman A, Tee KK
    Clin Infect Dis, 2014 Sep 15;59(6):910-1.
    PMID: 24944233 DOI: 10.1093/cid/ciu480
  14. Ng KT, Oong XY, Lim SH, Chook JB, Takebe Y, Chan YF, et al.
    Clin Infect Dis, 2018 07 02;67(2):261-268.
    PMID: 29385423 DOI: 10.1093/cid/ciy063
    Background: Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear.

    Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014.

    Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate.

    Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.

  15. Fatin MF, Ruslinda AR, Arshad MK, Tee KK, Ayub RM, Hashim U, et al.
    Biosens Bioelectron, 2016 Apr 15;78:358-66.
    PMID: 26655174 DOI: 10.1016/j.bios.2015.11.067
    Human immunodeficiency virus (HIV) has infected almost 35 million people worldwide. Various tests have been developed to detect the presence of HIV during the early stages of the disease in order to reduce the risk of transmission to other humans. The HIV-1 Tat protein is one of the proteins present in HIV that are released abundantly approximately 2-4 weeks after infection. In this review, we have outlined various strategies for detecting the Tat protein, which helps transcribe the virus and enhances replication. Detection strategies presented include immunoassays, biosensors and gene expression, which utilize antibodies or aptamers as common probes to sense the presence of Tat. Alternatively, measuring the levels of gene transcription is a direct method of analysing the HIV gene to confirm the presence of Tat. By detection of the Tat protein, virus transmission can be detected in high-risk individuals in the early stages of the disease to reduce the risk of an HIV pandemic.
  16. Supian NI, Ng KT, Chook JB, Takebe Y, Chan KG, Tee KK
    BMC Infect Dis, 2021 May 17;21(1):446.
    PMID: 34001016 DOI: 10.1186/s12879-021-06148-x
    BACKGROUND: Coxsackievirus A21 (CVA21), a member of Enterovirus C from the Picornaviridae family, has been associated with respiratory illnesses in humans.

    METHODS: A molecular epidemiological investigation of CVA21 was conducted among patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014 in Kuala Lumpur, Malaysia.

    RESULTS: Epidemiological surveillance of acute respiratory infections (n = 3935) showed low-level detection of CVA21 (0.08%, 1.4 cases/year) in Kuala Lumpur, with no clear seasonal distribution. Phylogenetic analysis of the new complete genomes showed close relationship with CVA21 strains from China and the United States. Spatio-temporal mapping of the VP1 gene determined 2 major clusters circulating worldwide, with inter-country lineage migration and strain replacement occurring over time.

    CONCLUSIONS: The study highlights the emerging role of CVA21 in causing sporadic acute respiratory outbreaks.

  17. Ng KT, Takebe Y, Kamarulzaman A, Tee KK
    Arch Virol, 2021 Jan;166(1):225-229.
    PMID: 33084935 DOI: 10.1007/s00705-020-04855-5
    Genome sequences of members of a potential fourth rhinovirus (RV) species, provisionally denoted as rhinovirus A clade D, from patients with acute respiratory infection were determined. Bayesian coalescent analysis estimated that clade D emerged around the 1940s and diverged further around 2006-2007 into two distinctive sublineages (RV-A8-like and RV-A45-like) that harbored unique "clade-defining" substitutions. Similarity plots and bootscan mapping revealed a recombination breakpoint located in the 5'-UTR region of members of the RV-A8-like sublineage. Phylogenetic reconstruction revealed the distribution of clade D viruses in the Asia Pacific region and in Europe, underlining its worldwide distribution.
  18. Zainal N, Ser HL, Yin WF, Tee KK, Lee LH, Chan KG
    Antonie Van Leeuwenhoek, 2016 Mar;109(3):467-74.
    PMID: 26786500 DOI: 10.1007/s10482-016-0653-1
    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol  %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links