Displaying publications 61 - 80 of 704 in total

Abstract:
Sort:
  1. Romero-Güiza MS, Wahid R, Hernández V, Møller H, Fernández B
    Sci Total Environ, 2017 Oct 01;595:651-659.
    PMID: 28402918 DOI: 10.1016/j.scitotenv.2017.04.006
    Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS-1of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS-1d-1, being a favourable case for an eventual scale-up of the combined process.
    Matched MeSH terms: Biomass
  2. Khan MF, Maulud KNA, Latif MT, Chung JX, Amil N, Alias A, et al.
    Sci Total Environ, 2018 Feb 01;613-614:1401-1416.
    PMID: 29898507 DOI: 10.1016/j.scitotenv.2017.08.025
    Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.
    Matched MeSH terms: Biomass
  3. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    Matched MeSH terms: Biomass
  4. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, et al.
    Sci Total Environ, 2020 Feb 01;702:134995.
    PMID: 31710849 DOI: 10.1016/j.scitotenv.2019.134995
    Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.
    Matched MeSH terms: Biomass
  5. Chan YH, Cheah KW, How BS, Loy ACM, Shahbaz M, Singh HKG, et al.
    Sci Total Environ, 2019 Aug 25;680:105-123.
    PMID: 31100662 DOI: 10.1016/j.scitotenv.2019.04.211
    The rising pressure on both cleaner production and sustainable development have been the main driving force that pushes mankind to seek for alternative greener and sustainable feedstocks for chemical and energy production. The biomass 'waste-to-wealth' concept which convert low value biomass into value-added products which contain high economic potential, have attracted the attentions from both academicians and industry players. With a tropical climate, Malaysia has a rich agricultural sector and dense tropical rainforest, giving rise to abundance of biomass which most of them are underutilized. Hence, the biomass 'waste-to-wealth' conversion through various thermochemical conversion technologies and the prospective challenges towards commercialization in Malaysia are reviewed in this paper. In this paper, a critical review about the maturity status of the four most promising thermochemical conversion routes in Malaysia (i.e. gasification, pyrolysis, liquefaction and hydroprocessing) is given. The current development of thermochemical conversion technologies for biomass conversion in Malaysia is also reviewed and benchmarked against global progress. Besides, the core technical challenges in commercializing these green technologies are highlighted as well. Lastly, the future outlook for successful commercialization of these technologies in Malaysia is included.
    Matched MeSH terms: Biomass*
  6. Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT
    Sci Total Environ, 2019 Oct 20;688:112-128.
    PMID: 31229809 DOI: 10.1016/j.scitotenv.2019.06.181
    The rapid depletion of fossil fuels and ever-increasing environmental pollution have forced humankind to look for a renewable energy source. Microalgae, a renewable biomass source, has been proposed as a promising feedstock to generate biofuels due to their fast growth rate with high lipid content. However, literatures have indicated that sustainable production of microalgae biofuels are only viable with a highly optimized production system. In the present study, a cradle-to-gate approach was used to provide expedient insights on the effect of different cultivation systems and biomass productivity toward life cycle energy (LCEA), carbon balance (LCCO2) and economic (LCC) of microalgae biodiesel production pathways. In addition, a co-production of bioethanol from microalgae residue was proposed in order to improve the economic sustainability of the overall system. The results attained in the present work indicated that traditional microalgae biofuels processing pathways resulted to several shortcomings, such as dehydration and lipid extraction of microalgae biomass required high energy input and contributed nearly 21 to 30% and 39 to 57% of the total energy requirement, respectively. Besides, the microalgae biofuels production system also required a high capital investment, which accounted for 47 to 86% of total production costs that subsequently resulted to poor techno-economic performances. Moreover, current analysis of environmental aspects of microalgae biorefinery had revealed negative CO2 balance in producing microalgae biofuels.
    Matched MeSH terms: Biomass
  7. Kassim MA, Meng TK
    Sci Total Environ, 2017 Apr 15;584-585:1121-1129.
    PMID: 28169025 DOI: 10.1016/j.scitotenv.2017.01.172
    Carbon dioxide (CO2) using biological process is one of the promising approaches for CO2 capture and storage. Recently, biological sequestration using microalgae has gained many interest due to its capability to utilize CO2 as carbon source and biomass produced can be used as a feedstock for other value added product for instance biofuel and chemicals. In this study, the CO2 biofixation by two microalgae species, Chlorella sp. and Tetraselmis suecica was investigated using different elevated CO2 concentration. The effect of CO2 concentration on microalgae growth kinetic, biofixation and its chemical composition were determined using 0.04, 5, 15 and 30% CO2. The variation of initial pH value and its relationship on CO2 concentration toward cultivation medium was also investigated. The present study indicated that both microalgae displayed different tolerance toward CO2 concentration. The maximum biomass production and biofixation for Chlorella sp. of 0.64gL-1 and 96.89mgL-1d-1 was obtained when the cultivation was carried out using 5 and 15% CO2, respectively. In contrast, the maximum biomass production and CO2 biofixation for T. suecica of 0.72gL-1 and 111.26mgL-1d-1 were obtained from cultivation using 15 and 5% CO2. The pH value for the cultivation medium using CO2 was between 7.5 and 9, which is favorable for microalgal growth. The potential of biomass obtained from the cultivation as a biorefinery feedstock was also evaluated. An anaerobic fermentation of the microalgae biomass by bacteria Clostridium saccharoperbutylacenaticum N1-4 produced various type of value added product such as organic acid and solvent. Approximately 0.27 and 0.90gL-1 of organic acid, which corresponding to acetic and butyric acid were produced from the fermentation of Chlorella sp. and T. suecica biomass. Overall, this study suggests that Chlorella sp. and T. suecica are efficient microorganism that can be used for CO2 biofixation and as a feedstock for chemical production.
    Matched MeSH terms: Biomass
  8. Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, et al.
    Sci Total Environ, 2023 Mar 15;864:160990.
    PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990
    Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
    Matched MeSH terms: Biomass
  9. Al-Humairi ST, Lee JGM, Harvey AP, Salman AD, Juzsakova T, Van B, et al.
    Sci Total Environ, 2023 Mar 01;862:160702.
    PMID: 36481155 DOI: 10.1016/j.scitotenv.2022.160702
    The purpose of this study was to examine the application of the mathematical model of drift flux to the experimental results of the effect of cationic trimethyl-ammonium bromide (CTAB)-aided continuous foam flotation harvesting on the lipid content in Chlorella vulgaris microalgae. An experiment was conducted to determine the effect of the operating conditions on the enrichment factor (EF) and percentage recovery efficiency (%RE), where the flow rates at the inlet and bottom outlet remained constant. Data for the binary system (without algae) and ternary system (with algae) in an equal-area foam column show that the EF decreases linearly with increasing initial CTAB concentrations ranging from 30 to 75 mg/L for three levels of the studied air volumetric flow rate range (1-3) L/min. The percentage harvesting efficiency increased with increasing initial CTAB concentration and air volumetric flow rate to 96 % in the binary systems and 94 % in the ternary systems. However, in the foam column with the riser used in the three systems, a lower volume of liquid foam in the upward outlet stream resulted in a lower RE% than that of the column without the riser. The objective function of EF for the system with algae increased when the initial CTAB concentration was increased from 30 to 45 mg/L in the foam column with a riser for all air flow rates, and after 45 mg/L, a sudden drop in the microalgae EF was observed. In the comparison between the foam column with and without the riser for the system with algae, the optimum EF was 145 for the design of the column with the riser and 139 for the column without the riser.
    Matched MeSH terms: Biomass
  10. Li Q, Zhang K, Li R, Yang L, Yi Y, Liu Z, et al.
    Sci Total Environ, 2023 May 10;872:162071.
    PMID: 36775179 DOI: 10.1016/j.scitotenv.2023.162071
    Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.
    Matched MeSH terms: Biomass
  11. Li T, Cheng H, Li Y, Mou Z, Zhu X, Wu W, et al.
    Sci Total Environ, 2023 Jul 10;881:163204.
    PMID: 37044342 DOI: 10.1016/j.scitotenv.2023.163204
    Tropical primary forests are being destroyed at an alarming rate and converted for other land uses which is expected to greatly influence soil carbon (C) cycling. However, our understanding of how tropical forest conversions affect the accumulation of compounds in soil functional C pools remains unclear. Here, we collected soils from primary forests (PF), secondary forests (SF), oil-palm (OP), and rubber plantations (RP), and assessed the accumulation of plant- and microbial-derived compounds within soil organic carbon (SOC), particulate (POC) and mineral-associated (MAOC) organic C. PF conversion to RP greatly decreased SOC, POC, and MAOC concentrations, whereas conversion to SF increased POC concentrations and decreased MAOC concentrations, and conversion to OP only increased POC concentrations. PF conversion to RP decreased lignin concentrations and increased amino sugar concentrations in SOC pools which increased the stability of SOC, whereas conversion to SF only increased the lignin concentrations in POC, and conversion to OP just increased lignin concentrations in POC and decreased it in MAOC. We observed divergent dynamics of amino sugars (decrease) and lignin (increase) in SOC with increasing SOC. Only lignin concentrations increased in POC with increasing POC and amino sugars concentrations decreased in MAOC with increasing MAOC. Conversion to RP significantly decreased soil enzyme activities and microbial biomasses. Lignin accumulation was associated with microbial properties, whereas amino sugar accumulation was mainly associated with soil nutrients and stoichiometries. These results suggest that the divergent accumulation of plant- and microbial-derived C in SOC was delivered by the distribution and original composition of functional C pools under forest conversions. Forest conversions changed the formation and stabilization processes of SOC in the long run which was associated with converted plantations and management. The important roles of soil nutrients and stoichiometry also provide a natural-based solution to enhance SOC sequestration via nutrient management in tropical forests.
    Matched MeSH terms: Biomass
  12. Tong CY, Derek CJC
    Sci Total Environ, 2023 Aug 20;887:163857.
    PMID: 37149157 DOI: 10.1016/j.scitotenv.2023.163857
    Bio-coatings serve as artificial scaffolds for immobilizing microalgae to facilitate cell concentration and harvesting. It has been used as an additional step to enhance the natural microalgal biofilm cultivation and to promote new opportunities in artificially-immobilize cultivation technology of microalgae. This technique is able to enhance biomass productivities, enable energy and cost saving, water volume reduction and ease of biomass harvesting since the cells are physically isolated from the liquid medium. However, scientific discoveries of bio-coatings for process intensification are still lacking and their working principles remained unclear. Therefore, this critical review aims to shed light on the advancement of cell encapsulation systems (hydrogel coating, artificial leaf, bio-catalytic latex coating, and cellular polymeric coating) over the years and aid in the selection of appropriate bio-coating techniques for various applications. Discussion on the different preparation routes of bio-coatings, as well as the exploration towards the potential of bio-based coating materials such as natural/synthetic polymers, latex binders, and algal organic matters are also included, with a focus on sustainable pursuits. This review also presents in-depth investigations into the environmental applications of bio-coatings in wastewater remediation, air purification, carbon bio-fixation, and bio-electricity. The field of bio-coating in microalgae immobilization gives rise to a new ecofriendly strategy with scalable cultivation footprint and a balanced environmental risk aligning with the United Nation's Sustainable Development Goals with potential towards the contribution of Zero Hunger, Clean Water and Sanitation, Affordable and Clean Energy, and Responsible Consumption and Production.
    Matched MeSH terms: Biomass
  13. Tong CY, Honda K, Derek CJC
    Sci Total Environ, 2024 Jan 01;906:167576.
    PMID: 37804964 DOI: 10.1016/j.scitotenv.2023.167576
    Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli. In the attached co-culture mode, the bio-coating we proposed demonstrated the ability to enhance microalgal growth for both studied species by a range of 2.5 % to 19 % starting from day 10 onwards. Additionally, when compared to co-culture on uncoated membranes, the bio-coating exhibited a significant bacterial growth promotion effect, increasing bacterial growth by at least 2.35 times for the C. vulgaris-E. coli co-culture after an initial adaptation phase. A significant increase of at least 72 % in intracellular biochemical compounds (including chlorophyll, polysaccharides, proteins, and lipids) was observed within just five days, primarily due to the high concentration of pre-coated organic matter, mainly sourced from the internal organic matter (IOM) of C. fusiformis. Higher accumulation of organic compounds in the bio-coating indirectly triggers a competition between microalgae and bacteria which potentially stimulate the production of additional intra-/extra-organic substances as a defensive response. In short, insight gained from this study may represent a paradigm shift in the ways that symbiotic interactions are promoted to increase the yield of specific bio-compounds with the presence of bio-coating.
    Matched MeSH terms: Biomass
  14. Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, et al.
    Sci Total Environ, 2023 Oct 20;896:165200.
    PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200
    Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
    Matched MeSH terms: Biomass
  15. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
    Matched MeSH terms: Biomass
  16. Amalina F, Krishnan S, Zularisam AW, Nasrullah M
    Sci Total Environ, 2024 Mar 01;914:169608.
    PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608
    Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
    Matched MeSH terms: Biomass
  17. Khairiatul Nabilah Jansar, Ahmad Muhaimin Roslan, Mohd Ali Hassan
    MyJurnal
    Oil palm (Elaeis guineensis Jacq.) is one of the most planted trees in Malaysia for the palm oil production. Thus, solid biomass had been generated from this industry such as empty fruit bunch, shell, mesocarp fibre, frond and trunk produced that causes problematic to the nation and expected to escalate up to 85-110 million tonnes by 2020. Besides that, palm oil mill effluent and excessive steam also generated from the production of palm oil. In situ hydrothermal pretreatment means the utilisation of excessive steam produced by the oil palm mill and at the same time, generating value added product as well as reducing the biomass. Oil palm biomass is rich in lignocellulosic materials which comprised of lignin, hemicellulose and cellulose. Refinement of lignocellulosic from oil palm biomass can be utilised to form fermentable sugar, bioethanol and other potential chemicals. Recalcitrant property of lignocellulosic reduces the ability of enzymes to penetrate, thus pretreatment is required prior to hydrolysis process. Pretreatment can be either physical, chemical, biological or combined. In this review paper, three types of hydrothermal pretreatment were discussed as suitable in situ pretreatment process for oil palm biomass; in palm oil mill. The suitability was measured based on the availability of excess steam and energy in the mill. Furthermore, physicochemical pretreatment also facilitate the saccharification process, whereby it loosened the lignocellulose structure and increase the surface area. The effects and factors in choosing right pretreatment are highlighted in this paper.
    Matched MeSH terms: Biomass
  18. Chin L, Moran JA, Clarke C
    New Phytol, 2010 Apr;186(2):461-70.
    PMID: 20100203 DOI: 10.1111/j.1469-8137.2009.03166.x
    *Three Bornean pitcher plant species, Nepenthes lowii, N. rajah and N. macrophylla, produce modified pitchers that 'capture' tree shrew faeces for nutritional benefit. Tree shrews (Tupaia montana) feed on exudates produced by glands on the inner surfaces of the pitcher lids and defecate into the pitchers. *Here, we tested the hypothesis that pitcher geometry in these species is related to tree shrew body size by comparing the pitcher characteristics with those of five other 'typical' (arthropod-trapping) Nepenthes species. *We found that only pitchers with large orifices and lids that are concave, elongated and oriented approximately at right angles to the orifice capture faeces. The distance from the tree shrews' food source (that is, the lid nectar glands) to the front of the pitcher orifice precisely matches the head plus body length of T. montana in the faeces-trapping species, and is a function of orifice size and the angle of lid reflexion. *Substantial changes to nutrient acquisition strategies in carnivorous plants may occur through simple modifications to trap geometry. This extraordinary plant-animal interaction adds to a growing body of evidence that Nepenthes represents a candidate model for adaptive radiation with regard to nitrogen sequestration strategies.
    Matched MeSH terms: Biomass
  19. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Biomass
  20. Wahome M, Rubinstein E
    Malays J Med Sci, 2011 Jul;18(3):1-3.
    PMID: 22135594 MyJurnal
    If Malaysia is to become a high-income country by 2020, it will have to transform into a knowledge-based, innovation economy. This goal will be achieved by developing an atmosphere conducive to experimentation and entrepreneurship at home; while reaching out to partners across the globe. One of Malaysia's newest partnerships is with the New York Academy of Sciences. The Academy has expertise in innovation and higher education and a long history of promoting science, education, and science-based solutions through a global network of scientists, industry-leaders, and policy-makers. Malaysia's Prime Minister, Dato' Sri Mohd Najib Tun Abdul Razak, leveraged the Academy's network to convene a science, technology, and innovation advisory council. This council would provide practical guidance to establish Malaysia as an innovation-based economy. Three initial focus areas, namely palm-oil biomass utilisation, establishment of smart communities, and capacity building in science and engineering, were established to meet short-term and long-term targets.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links