Displaying publications 61 - 80 of 379 in total

Abstract:
Sort:
  1. Kee PE, Ng TC, Lan JC, Ng HS
    Crit Rev Biotechnol, 2020 Jun;40(4):555-569.
    PMID: 32283954 DOI: 10.1080/07388551.2020.1747388
    Aqueous biphasic system (ABS) is widely used in the recovery, extraction, purification and separation of proteins, enzymes, nucleic acids and antibodies. The ABS with high water content and low interfacial tension offers a biocompatible environment for the recovery of labile biomolecules. Process integration can be achieved using ABS by incorporating multiple-steps of purification, concentration and purification of biomolecules in a single-step operation which often results in high product recovery yield and purity. Conventional ABS is usually formed by aqueous solutions of two polymers or a polymer and a salt above a critical concentration. The high viscosity of polymer-based ABS causes slow phase separation and hinders the mass transfer of biomolecules, whereas polymer/salt ABS is characterized by high ionic strength resulting in the loss of bioactivity of recovered biomolecules. These limitations have encouraged the development of novel ABS which is more cost-effective for various biotechnological applications. This review discusses the characteristics and mechanisms of several types of emerging unconventional ABS using phase-forming components such as hyperbranched polymers, special salts, surfactants, magnetic fields, the addition of nanoparticles and incorporation of various solvent. Moreover, several novel applications of ABS for different separation purposes such as microfluidic-based ABS, ABS bioreactors, application of ABS as an analytical tool, and ABS micropatterning are discussed in this review. In the last section of this review, a comprehensive summary of process integration using ABS for extractive fermentations, bioconversion, crystallization and precipitation is also supplemented for the comprehensive review of various types and applications of ABS in recent years.
    Matched MeSH terms: Bioreactors
  2. Liew YX, Chan YJ, Manickam S, Chong MF, Chong S, Tiong TJ, et al.
    Sci Total Environ, 2020 Apr 15;713:136373.
    PMID: 31954239 DOI: 10.1016/j.scitotenv.2019.136373
    Oil and grease, carbohydrate, protein, and lignin are the main constituents of high strength wastewaters such as dairy wastewater, cheese whey wastewater, distillery wastewater, pulp and paper mill wastewater, and slaughterhouse wastewaters. These constituents have contributed to various operational problems faced by the high-rate anaerobic bioreactor (HRAB). During the hydrolysis stage of anaerobic digestion (AD), these constituents can be hydrolyzed. Since hydrolysis is known to be the rate-limiting step of AD, the overall AD can be enhanced by improving the hydrolysis stage. This can be done by introducing pretreatment that targets the degradation of these constituents. This review mainly focuses on the biological pretreatment on various high-strength wastewaters by using different types of enzymes namely lipase, amylase, protease, and ligninolytic enzymes which are responsible for catalyzing the degradation of oil and grease, carbohydrate, protein, and lignin respectively. This review provides a summary of enzymatic systems involved in enhancing the hydrolysis stage and consequently improve biogas production. The results show that the use of enzymes improves the biogas production in the range of 7 to 76%. Though these improvements are highly dependent on the operating conditions of pretreatment and the types of substrates. Therefore, the critical parameters that would affect the effectiveness of pretreatment are also discussed. This review paper will serve as a useful piece of information to those industries that face difficulties in treating their high-strength wastewaters for the appropriate process, equipment selection, and design of an anaerobic enzymatic system. However, more intensive studies on the optimum operating conditions of pretreatment in a larger-scale and synergistic effects between enzymes are necessary to make the enzymatic pretreatment economically feasible.
    Matched MeSH terms: Bioreactors
  3. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Bioreactors/microbiology
  4. Al-Mamun A, Jafary T, Baawain MS, Rahman S, Choudhury MR, Tabatabaei M, et al.
    Environ Res, 2020 04;183:109273.
    PMID: 32105886 DOI: 10.1016/j.envres.2020.109273
    Developing cost-effective technology for treatment of sewage and nitrogen-containing groundwater is one of the crucial challenges of global water industries. Microbial fuel cells (MFCs) oxidize organics from sewage by exoelectrogens on anode to produce electricity while denitrifiers on cathode utilize the generated electricity to reduce nitrogen from contaminated groundwater. As the exoelectrogens are incapable of oxidizing insoluble, polymeric, and complex organics, a novel integration of an anaerobic sequencing batch reactor (ASBR) prior to the MFC simultaneously achieve hydrolytic-acidogenic conversion of complex organics, boost power recovery, and remove Carbon/Nitrogen (C/N) from the sewage and groundwater. The results obtained revealed increases in the fractions of soluble organics and volatile fatty acids in pretreated sewage by 52 ± 19% and 120 ± 40%, respectively. The optimum power and current generation with the pretreated sewage were 7.1 W m-3 and 45.88 A m-3, respectively, corresponding to 8% and 10% improvements compared to untreated sewage. Moreover, the integration of the ASBR with the biocathode MFC led to 217% higher carbon and 136% higher nitrogen removal efficiencies compared to the similar system without ASBR. The outcomes of the present study represent the promising prospects of using ASBR pretreatment and successive utilization of solubilized organics in denitrifying biocathode MFCs for simultaneous energy recovery and C/N removal from both sewage and nitrate nitrogen-contaminated groundwater.
    Matched MeSH terms: Bioreactors*
  5. Khadaroo SNBA, Grassia P, Gouwanda D, Poh PE
    J Environ Manage, 2020 Mar 01;257:109996.
    PMID: 31868647 DOI: 10.1016/j.jenvman.2019.109996
    An alternative method was proposed to optimize the treatment process of palm oil mill effluent (POME) in an effort to address the poor removal efficiencies in terms of the chemical and biological oxygen demand (COD and BOD), total suspended solids (TSS) as well as oil and grease (O&G) content in treated POME along with many environmental issues associated with the existing POME treatment process. The elimination of the cooling ponds and the insertion of a dewatering device in the treatment process were recommended. The dewatering device should enhance the anaerobic digestion process by conferring a means of control on the digesters' load. The objective of this study is to identify the optimum solid: liquid ratio (total solids (TS) content) that would generate the maximum amount of biogas with better methane purity consistently throughout the anaerobic digestion of POME, all while improving the treated effluent quality. It was established that a 40S:60L (4.02% TS) was the best performing solid loading in terms of biogas production and methane yield as well as COD, BOD, TSS, and O&G removal efficiencies. Meanwhile, at higher solid loadings, the biogas production is inhibited due to poor transport and mass transfer. It is also speculated that sulfate-reducing bacteria tended to inhibit the biogas production based on the significantly elevated H2S concentration recorded for the 75S:25L and the 100S loadings.
    Matched MeSH terms: Bioreactors*
  6. Zaied BK, Nasrullah M, Siddique MNI, Zularisam AW, Singh L, Krishnan S
    Sci Total Environ, 2020 Mar 01;706:136095.
    PMID: 31862587 DOI: 10.1016/j.scitotenv.2019.136095
    Lack of sufficient nitrogenous substrate and buffering potential have been acknowledged as impediments to the treatment of palm oil mill effluent through co-digestion processes. In this study, ammonium bicarbonate was used to provide the nitrogenous substrate and buffering potential. To regulate the impact of ammonium bicarbonate toxicity on the anaerobic co-digestion system, dosages from 0 to 40 mg/L were supplemented. The biogas yield was used to indicate the effects of NH4+ toxicity. In a solar-assisted bioreactor, solar radiation was first collected by a solar panel and converted into electricity, which was then used to heat a mixture of palm oil mill effluent and cattle manure to maintain the reactor in the mesophilic temperature range. This co-digestion operation was performed semi-continuously and was analyzed at a 50:50 mixing ratio of palm oil mill effluent and cattle manure. The results indicate that the additional dosing of ammonium bicarbonate can significantly enhance biogas production. Maximum cumulative biogas and methane productions of 2034.00 mL and 1430.51 mL, respectively, were obtained with the optimum addition of 10 mg/L ammonium bicarbonate; these values are 29.80% and 42.30% higher, respectively, than that obtained in the control co-digestion operation without addition of ammonium bicarbonate. Utilization of a mathematical equation (G = Gmk/t) to describe a kinetic analysis of the biogas yield also indicated that the optimum ammonium bicarbonate dose was 10 mg/L. The results of this study suggest that supplementation with ammonium bicarbonate doses of up to 40 mg/L can be used to provide nitrogenous substrates and buffering potential in anaerobic co-digestion processes. The determination of the optimal dose provides an alternative and efficient option for enhanced biogas production, which will have obvious economic advantages for feasible industrial applications.
    Matched MeSH terms: Bioreactors*
  7. Osman A, Mat Nawi NI, Samsuri S, Bilad MR, Shamsuddin N, Khan AL, et al.
    Polymers (Basel), 2020 Feb 12;12(2).
    PMID: 32059397 DOI: 10.3390/polym12020432
    A membrane bioreactor enhances the overall biological performance of a conventional activated sludge system for wastewater treatment by producing high-quality effluent suitable for reuse. However, membrane fouling hinders the widespread application of membrane bioreactors by reducing the hydraulic performance, shortening membrane lifespan, and increasing the operational costs for membrane fouling management. This study assesses the combined effect of membrane surface corrugation and a tilted panel in enhancing the impact of air bubbling for membrane fouling control in activated sludge filtration, applicable for membrane bioreactors. The filterability performance of such a system was further tested under variable parameters: Filtration cycle, aeration rate, and intermittent aeration. Results show that a combination of surface corrugation and panel tilting enhances the impact of aeration and leads to 87% permeance increment. The results of the parametric study shows that the highest permeance was achieved under short filtration-relaxation cycle of 5 min, high aeration rate of 1.5 L/min, and short switching period of 2.5 min, to yield the permeances of 465 ± 18, 447 ± 2, and 369 ± 9 L/(m2h bar), respectively. The high permeances lead to higher operational flux that helps to lower the membrane area as well as energy consumption. Initial estimation of the fully aerated system yields the energy input of 0.152 kWh/m3, much lower than data from the full-scale references of <0.4 kWh/m3. Further energy savings and a lower system footprint can still be achieved by applying the two-sided panel with a switching system, which will be addressed in the future.
    Matched MeSH terms: Bioreactors
  8. Gao Y, Wang X, Li J, Lee CT, Ong PY, Zhang Z, et al.
    Bioresour Technol, 2020 Feb;297:122427.
    PMID: 31784249 DOI: 10.1016/j.biortech.2019.122427
    The novel immobilized microbial granules (IMG) shows a significant effect of nitrification for freshwater aquaculture. However, there is lack of evaluation study on the performance of nitrification at high salinity due to the concentration of recycled water or seawater utilization. A laboratory scale moving bed bioreactor (MBBR) with IMG was tested on recycled synthetic aquaculture wastewater for the nitrification at 2.5 mg/L NH3-N daily. The results indicated that IMG showed a high salinity tolerance and effectively converted ammonia to nitrate up to 92% at high salinity of 35.0 g/L NaCl. As salinity increased from near zero to 35.0 g/L, the microbial activity of nitrite oxidation bacteria (NOB) in the IMG decreased by 86.32%. The microbial community analysis indicated that salinity significantly influenced the community structure. It was found that Nitrosomonas sp. and Nitrospira sp. were the dominant genera for ammonia oxidation bacteria (AOB) and NOB respectively at different salinity levels.
    Matched MeSH terms: Bioreactors
  9. Biglari N, Orita I, Fukui T, Sudesh K
    J Biotechnol, 2020 Jan 10;307:77-86.
    PMID: 31669355 DOI: 10.1016/j.jbiotec.2019.10.013
    This study investigates the effect of strategies on poly(3-hydroxybutyrate) [P(3HB)] production in bioreactor. In the production of P(3HB), urea and glucose feeding streams were developed to characterize the fed-batch culture conditions for new Cupriavidus necator NSDG-GG mutant. Feeding urea in repeated fed-batch stage (RFB-I) at 6, and 12 h in cultivation led to insignificant kinetic effect on the cell dry mass (CDM) and P(3HB) accumulation. Feeding glucose in repeated fed-batch stage (RFB-II) demonstrated that the incremental feeding approach of glucose after urea in fill-and-draw (F/D) mode at 24, 30, 36, 42, and 48 h in fermentation increased CDM and P(3HB) concentration. In the 1st cycle in RFB-II, the cumulative CDM reached the value of 26.22 g/L and then it increased with the successive repeated fed-batches to attain biomass of 145 g/L at the end of 5th cycle of RFB-II. The final cumulative P(3HB) concentration at the end of 5th cycle of RFB-II reached 111 g/L with the overall yield of 0.50 g P(3HB) g gluc- 1; the CDM productivity from the RFB-II cycles was in the range of 0.84-1.3 g/(L·h). The RFB-II of glucose in an increment mode produced nearly 2.2 times more increase in CDM and P(3HB) productivities compared to the decrement RFB-II mode. Repeated cultivation had also the advantage of avoiding extra time required for innoculum preparation, and sterilization of bioreactor during batch, thereby it increased the overall industrial importance of the process.
    Matched MeSH terms: Bioreactors
  10. Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, et al.
    Bioresour Technol, 2020 Jan;296:122275.
    PMID: 31683109 DOI: 10.1016/j.biortech.2019.122275
    The present study intends to evaluate the potential of co-digestion for utilizing Organic fraction of Municipal Solid Waste (OFMSW) and sewage sludge (SS) for enhanced biogas production. Metagenomic analysis was performed to identify the dominant bacteria, archaea and fungi, changes in their communities with time and their functional roles during the course of anaerobic digestion (AD). The cumulative biogas yield of 586.2 mL biogas/gVS with the highest methane concentration of 69.5% was observed under an optimum ratio of OFMSW:SS (40:60 w/w). Bacteria and fungi were found to be majorly involved in hydrolysis and initial stages of AD. Probably, the most common archaea Methanosarsina sp. primarily followed the acetoclastic pathway. The hydrogenotrophic pathway was less followed as indicated by the reduction in abundance of syntrophic acetate oxidizers. An adequate understanding of microbial communities is important to manipulate and inoculate the specific microbial consortia to maximize CH4 production through AD.
    Matched MeSH terms: Bioreactors
  11. Ganesan S, Vadivelu VM
    Bioresour Technol, 2020 Jan;296:122341.
    PMID: 31711905 DOI: 10.1016/j.biortech.2019.122341
    Anammox bacteria can easily undergo starvation due to fluctuations in feed flowrate and concentration in wastewater treatment plants. In this study, we analyzed the effects of different types of storage conditions (presence of ammonium (Ra), nitrite (Rn), hydrazine (Rh), and no substrate (Rc)) in aiding the viability of anammox bacteria during starvation and recovery. After starvation, the bacteria were subjected to a 15-week recovery period. Anammox bacteria showed better results during starvation and recovery in Rh as compared to other conditions. Decay rate values obtained after starvation in Ra, Rn, Rh, and Rc were 0.032/day, 0.042/day, 0.019/day, and 0.037/day, respectively. Meanwhile, µmax values obtained in Rh, Ra, Rn, and Rc on the 15th week of recovery were 0.092, 0.075, 0.011, and 0.067 d-1, respectively. This indicated that the availability of hydrazine helps to reduce the mortality rate of anammox bacteria during starvation and enhances the recovery of anammox process.
    Matched MeSH terms: Bioreactors
  12. How SW, Sin JH, Wong SYY, Lim PB, Mohd Aris A, Ngoh GC, et al.
    Water Sci Technol, 2020 Jan;81(1):71-80.
    PMID: 32293590 DOI: 10.2166/wst.2020.077
    Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.
    Matched MeSH terms: Bioreactors
  13. Omar AH, Muda K, Majid ZA, Affam AC, Ezechi EH
    Water Environ Res, 2020 Jan;92(1):73-83.
    PMID: 31276251 DOI: 10.1002/wer.1177
    Biogranulation is an effective biological technology suitable for the treatment of various wastewaters. However, the major drawback of this technique is the long start-up period for biogranule development. Hence, the primary focus of this study was on cell surface hydrophobicity which is the main parameter that indicates cell agglomeration during the initial self-immobilization process of aerobic granulation. The effects of sludge concentration and magnetic activated carbon on cell surface hydrophobicity were investigated in this study. Response surface methodology (RSM) was applied to design, analyze, and optimize the outcome of the study. Experiments were performed at sludge concentration of 1,000-3,000 mg/L and magnetic activated carbon mass of 1-5 g/L with 24 hr of aeration time. The results show that both variables yielded a positive significant effect on the initial development of aerobic granulation with 56% surface hydrophobicity. Interaction effects between variables on the responses were significant with positive estimated interaction effect at all different measured aeration time. The magnetic activated carbon acted as nuclei to induce bacterial attachment and further enhanced the initial process of biogranule development under optimal condition of 1:1.1 (sludge concentration: magnetic activated carbon). PRACTITIONER POINTS: Cell surface hydrophobicity was evaluated Magnetic activated carbon enhanced cell surface hydrophobicity Response surface methodology was employed for analyses Magnetic activate carbon mass and biomass concentration was significant Magnetic activated carbon acted as nuclei to improve biogranulation.
    Matched MeSH terms: Bioreactors*
  14. Hassan MNFB, Yazid MD, Yunus MHM, Chowdhury SR, Lokanathan Y, Idrus RBH, et al.
    Stem Cells Int, 2020;2020:9529465.
    PMID: 32733574 DOI: 10.1155/2020/9529465
    Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.
    Matched MeSH terms: Bioreactors
  15. Alsaheb RA, Zjeh KZ, Malek RA, Abdullah JK, El Baz A, El Deeb N, et al.
    Recent Pat Food Nutr Agric, 2020;11(3):211-218.
    PMID: 32178622 DOI: 10.2174/2212798411666200316153148
    BACKGROUND: For many years, Ganoderma was highly considered as biofactory for the production of different types of bioactive metabolites. Of these bioactive compounds, polysaccharides gained much attention based on their high biotherapeutic properties. Therefore, special attention has been paid during the last years for the production of mushrooms bioactive compounds in a closed cultivation system to shorten the cultivation time and increase the product yield.

    OBJECTIVES: This work focuses on the development of a simple cultivation strategy for exopolysaccharides (EPS) production using Ganoderma lucidum and submerged cultivation system.

    METHODS: At first, the best medium supporting EPS production was chosen experimentally from the current published data. Second, like many EPS production processes, carbon and nitrogen concentrations were optimized to support the highest production of polysaccharides in the shake flask level. Furthermore, the process was scaled up in 16-L stirred tank bioreactor.

    RESULTS: The results clearly demonstrated that the best cultivation strategy was cultivation under controlled pH conditions (pH 5.5). Under this condition, the maximal volumetric and specific yield of EPS production were, 5.0 g/L and 0.42 g/g, respectively.

    CONCLUSION: The current results clearly demonstrate the high potential use of submerged cultivation system as an alternative to conventional solid-state fermentation for EPS production by G. lucidum. Furthermore, the optimization of both carbon and nitrogen sources concentration and scaling up of the process showed a significant increase in both volumetric and specific EPS production.

    Matched MeSH terms: Bioreactors
  16. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
    Matched MeSH terms: Bioreactors*
  17. Dehhaghi M, Tabatabaei M, Aghbashlo M, Kazemi Shariat Panahi H, Nizami AS
    J Environ Manage, 2019 Dec 01;251:109597.
    PMID: 31563049 DOI: 10.1016/j.jenvman.2019.109597
    Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
    Matched MeSH terms: Bioreactors
  18. Amin MM, Taheri E, Bina B, van Ginkel SW, Ghasemian M, Puad NIM, et al.
    J Environ Manage, 2019 Nov 15;250:109461.
    PMID: 31499462 DOI: 10.1016/j.jenvman.2019.109461
    Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
    Matched MeSH terms: Bioreactors
  19. Zainab-L I, Sudesh K
    J Biotechnol, 2019 Nov 10;305:35-42.
    PMID: 31493421 DOI: 10.1016/j.jbiotec.2019.09.001
    The cost of polyhydroxyalkanoates (PHAs) can be reduced by improving their productivity and recovery. In this study, we attempted to obtain a high cell density culture from a 13 L bioreactor and subsequently improved the recently developed biological recovery process using mealworms to obtain the PHA granules. A cell dry weight of 161 g/L containing 68-70 wt% P(3HB) was obtained. The freeze-dried cells contained a significant amount of mineral salts from the culture medium which reduced the cells' palatability for the mealworms. A simple washing procedure with water was sufficient to remove the residual mineral salts and this improved the cells' consumption by up to 12.5% of the mealworms' body weight. As a result, one kilogram of mealworms consumed 125 g of the washed cells daily and 87.2 g of feacal pellets were recovered, which was almost twice the weight of the unwashed cells. In addition, it also improved the purity of the PHA in the faecal pellets to a value <90% upon washing with water to remove the water-soluble compounds. This study has demonstrated a significant improvement in the production and recovery of PHA. In addition, the resulting mealworms showed a significant increase in protein content up to 79% and a decrease in fat content down to 8.3% of its dry weight.
    Matched MeSH terms: Bioreactors/microbiology
  20. Mohd Hanafiah Z, Wan Mohtar WHM, Abu Hasan H, Jensen HS, Klaus A, Wan-Mohtar WAAQI
    Sci Rep, 2019 11 06;9(1):16109.
    PMID: 31695087 DOI: 10.1038/s41598-019-52493-y
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
    Matched MeSH terms: Bioreactors/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links