RESULTS: Using in silico methods, we studied the predicted interactions between bromelain and key proteins involved in NPC oncogenesis, specifically β-catenin, PIK3CA, mTOR, EGFR, and BCL2. Molecular docking strategies were performed using a myriad of computational tools. A 3D model of bromelain was constructed using SWISS-MODEL, followed by molecular docking simulations performed with ClusPro. The binding affinities of the docked complexes were evaluated using HawkDock, and the interactions were analysed with LigPlot+. The docking scores indicated potential spontaneous interactions, with binding affinities based on being - 103.89 kcal/mol (PIK3CA), -73.16 kcal/mol (EGFR), -71.18 kcal/mol (mTOR), -65.22 kcal/mol (β-catenin), and - 57.48 kcal/mol (BCL2). LigPlot + analysis revealed the presence of hydrogen bonds, hydrophobic interactions, and salt bridges, indicating stable predicted interactions.
CONCLUSION: Our findings suggest that bromelain can target key proteins involved in NPC oncogenesis, with the strongest affinity towards PIK3CA. This suggests a hypothetical insight into bromelain's anticancer effects on NPC through the modulation of the PI3K/Akt signaling pathway.
Methods: This research investigated the blaKPC, and MBL genes, namely, blaIMP, blaVIM, and blaNDM-1 and their phenotypic resistance to K. pneumoniae isolated from urinary tract infections (UTI) in Bangladesh. Isolated UTI K. pneumoniae were identified by API-20E and 16s rDNA gene analysis. Their phenotypic antimicrobial resistance was examined by the Kirby-Bauer disc diffusion method, followed by minimal inhibitory concentration (MIC) determination. blaKPC, blaIMP, blaNDM-1, and blaVIM genes were evaluated by polymerase chain reactions (PCR) and confirmed by sequencing.
Results: Fifty-eight K. pneumoniae were identified from 142 acute UTI cases. Their phenotypic resistance to amoxycillin-clavulanic acid, cephalexin, cefuroxime, ceftriaxone, and imipenem were 98.3%, 100%, 96.5%, 91.4%, 75.1%, respectively. Over half (31/58) of the isolates contained either blaKPC or one of the MBL genes. Individual prevalence of blaKPC, blaIMP, blaNDM-1, and blaVIM were 15.5% (9), 10.3% (6), 22.4% (13), and 19% (11), respectively. Of these, eight isolates (25.8%, 8/31) were found to have two genes in four different combinations. The co-existence of the ESBL genes generated more resistance than each one individually. Some isolates appeared phenotypically susceptible to imipenem in the presence of blaKPC, blaIMP, blaVIM, and blaNDM-1 genes, singly or in combination.
Conclusion: The discrepancy of genotype and phenotype resistance has significant consequences for clinical bacteriology, precision in diagnosis, the prudent selection of antimicrobials, and rational prescribing. Heterogeneous phenotypes of antimicrobial susceptibility testing should be taken seriously to avoid inappropriate diagnostic and therapeutic decisions.