OBJECTIVE: Thus, the present study is designed to compare the neuroprotective potential of MSC derived exosomes with MSC-condition medium or neuron-MSC-co-culture system against kainic acid induced excitotoxicity in in vitro condition. The study also aims at comparing the neuroprotective efficacy of exosomes/condition medium/co-culture of two MSC viz., neural crest derived human Dental Pulp Stem Cells (hDPSC) and human Bone-Marrow Mesenchymal Stem Cells (hBM-MSC) to identify the appropriate MSC source for treating neurodegenerative diseases.
RESULT: Our results demonstrated that neuroprotective efficacy of MSC-exosomes is as efficient as MSC-condition medium or neuron-MSC co-culture system and treating degenerating hippocampal neurons with all three MSC based approaches could up-regulate host's endogenous growth factor expressions and prevent apoptosis by activating cell survival PI3K-B-cell lymphoma-2 (Bcl-2) pathway.
CONCLUSION: Thus, the current study highlights the possibilities of treating neurodegenerative diseases with "Nano" size exosomes as opposed to transplanting billions of stem cells which inherit several disadvantages.
AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs).
MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated.
RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs.
CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.