Displaying publications 61 - 80 of 306 in total

Abstract:
Sort:
  1. Mohammadi S, Sekawi Z, Monjezi A, Maleki MH, Soroush S, Sadeghifard N, et al.
    Int J Infect Dis, 2014 Aug;25:152-8.
    PMID: 24909489 DOI: 10.1016/j.ijid.2014.02.018
    Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen of public health importance. The prevalence of MRSA and its antimicrobial resistance pattern, as well as SCCmec and spa types, remain unclear both in the community and in the hospitals of the western region of Iran.
    Matched MeSH terms: Drug Resistance, Bacterial*
  2. Vairappan CS, Kawamoto T, Miwa H, Suzuki M
    Planta Med, 2004 Nov;70(11):1087-90.
    PMID: 15549668
    Common Gram-positive clinical pathogens are showing an increasing trend for resistance to conventional antimicrobial agents. New drugs with potent antibacterial activities are urgently needed to remediate this problem. Halogenated compounds isolated from several species of the red algae genus Laurencia were examined for their antibacterial activity against 22 strains of human pathogenic bacteria, 7 strains of which were antibiotic-resistant bacteria. Four phenolic sesquiterpenes and a polybrominated indole showed wide spectra of antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecalis and E. faecium (VRE). In addition, laurinterol and allolaurinterol displayed potent bactericidal activity against three strains of MRSA at 3.13 microg mL(-1), and three strains of vancomycin-susceptible Enterococcus, at 3.13 microg mL(-1) and 6.25 microg mL(-1), respectively.
    Matched MeSH terms: Drug Resistance, Bacterial*
  3. Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al.
    Eur J Pharm Sci, 2022 Mar 01;170:106103.
    PMID: 34936936 DOI: 10.1016/j.ejps.2021.106103
    Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.
    Matched MeSH terms: Drug Resistance, Bacterial
  4. Gunasegaran T, Rathinam X, Kasi M, Sathasivam K, Sreenivasan S, Subramaniam S
    Asian Pac J Trop Biomed, 2011 Aug;1(4):266-9.
    PMID: 23569772 DOI: 10.1016/S2221-1691(11)60040-3
    To isolate Salmonella from curry samples and to evaluate the drug sensitivity of the food-borne Salmonella and its susceptibility to specific plant extracts.
    Matched MeSH terms: Drug Resistance, Bacterial
  5. Singh G, Kesharwani P, Srivastava AK
    Curr Drug Deliv, 2018;15(3):312-320.
    PMID: 29165080 DOI: 10.2174/1567201814666171120125916
    BACKGROUND: Tuberculosis is an infection and caused by gentle growing bacteria. The Internet provides opportunities for people with tuberculosis (TB) to connect with one another to address these challenges.

    OBJECTIVE: The aim of this paper is to introduce readers to the platforms on which Tuberculosis participants interact, to discuss reasons for and risks associated with TB-related activity, and to review research related to the potential impact of individual participation on TB outcomes.

    METHODS: Research and online content related to Tuberculosis online activity is reviewed, however, the difficulty in accurate prescribing and adhering to these protocols and the emergence of M. tuberculosis strains resistant to multiple drugs and drug-drug interactions that interfere with optimal treatment of Tuberculosis and co-infected patients with the different disease has generated a pressing need for improved Tuberculosis therapies.

    RESULTS: Together with the ominous global burden of Tuberculosis, those shortcomings of current medication have contributed to a renewed interest in the development of improved drugs and protocols for the medication of Tuberculosis. This article features obstacles related with the enhanced utilization of existing drugs and difficulties related with the advancement of enhanced products, concentrating on perspectives characteristic in Tuberculosis drug clinical improvement. The participation includes peer support, advocacy, self-expression, seeking and sharing TB information, improving approaches to Tuberculosis data management, and humour.

    CONCLUSION: This article highlights hurdles related to the optimised use of existing drugs and challenges related to the development of improved products, focusing on aspects inherent in Tuberculosis drug clinical development. Concluding comments offer processes for more efficient development of Tuberculosis therapies and increase the quality of life.

    Matched MeSH terms: Drug Resistance, Bacterial
  6. Lim CL, Spelman D
    Infect Dis Health, 2019 08;24(3):124-133.
    PMID: 30928569 DOI: 10.1016/j.idh.2019.02.001
    BACKGROUND: Treatment of ESBL- and AmpC-producing Enterobacteriaceae bacteremia is often complicated by lack of appropriate antibiotics. We aimed to determine the predictors of mortality and impact of empirical antibiotics.

    METHODS: A retrospective observational study was performed on consecutive adult cases of ESBL and AmpC bacteremia at the Alfred Hospital from 2014 through April 2018.

    RESULTS: Among 110 patients with ESBL (88.2%) and AmpC (14.5%) bacteremia episodes, 96.4% had comorbidities such as hematological malignancy (30%). Approximately 45% were on immunosuppressive drugs, while 69% had recent antibiotic exposure. Over 84% of bacteremias were hospital acquired or healthcare associated. Urinary tract was the main source of infection (40%) with E. coli being the commonest organism (66.4%). The isolates were least resistant to gentamicin (21.8%), which was often appropriately used in empirical therapy. About 34% of patients presented with severe sepsis or shock. The 30-day mortality rate was 20% with no correlation with inappropriate empirical antibiotics (52%). There was no significant mortality difference between carbapenem use in empirical and definitive therapy. Respiratory source [OR 11.77, 95% CI 1.30-106.85; p = 0.03], severe sepsis or shock [OR 5.17, 95% CI 1.37-19.55; p = 0.02] and inappropriate definitive therapy [OR 27.93, 95%CI 3.69-211.35; p = 0.001] were independent predictors for mortality.

    CONCLUSION: The choice and appropriateness of empirical therapy were not associated with mortality in ESBL and AmpC bacteremia. Prudent use of carbapenem is reasonable with gentamicin as alternative. Emphasis should be on prompt resuscitation in severe sepsis and early detection of ESBL and AmpC to facilitate appropriate switch to definitive therapy.

    Matched MeSH terms: Drug Resistance, Bacterial
  7. Samuel, L., Marian, M.M.,, Apun, K., Lesley, M.B., Son, R.
    MyJurnal
    Antibiotic susceptibility and genetic diversity of E. coli isolated from cultured catfish and their surrounding environment were determined. The levels of resistance of the E. coli isolates towards six different antibiotics tested differed considerably. Though the isolates displayed resistance towards some of the antibiotics tested, none of the isolates showed resistant towards norfloxacin, sulphametoxazole/trimethoprim and chloramphenicol. RAPD-PCR analysis using single primer and primers combination clustered the E. coli isolates into 3 and 5 groups, respectively. The results of this study suggest that the E. coli isolates from the catfish and their surrounding environment derived from a mixture of sensitive and resistant strains with diverse genetic contents. The use of the RAPD analysis is sufficiently discriminatory for the typing of the E. coli isolates.
    Matched MeSH terms: Drug Resistance, Bacterial
  8. Tan, Y.F., Haresh, K.K., Chai, L.C., Son R.
    MyJurnal
    A study to determine the antibiotic sensitivity pattern and genotyping using RAPD-PCR was performed on 50 C. jejuni isolated from sushi retailed in different supermarkets. With less than half of the isolates susceptible to the antibiotics tested, resistant to two or more antibiotics were observed in most of the isolates. The banding patterns obtained from RAPD-PCR revealed that no predominant clone exists and the bacterial population is rather diverse. Hence, the resistance of the C. jejuni to different classes of antibiotic as well as their diverse genotypes suggests that these C. jejuni isolates were generated from different sources in the contaminated supermarkets where sushi were retailed. Our data showed that C. jejuni can be an important reservoir for resistance genes and that study with comprehensive collections of samples are urgently required to establish better measures to reduce or eliminate the risk from antibiotic resistant and pathogenic bacteria originating from minimally processed ready-to-eat food.
    Matched MeSH terms: Drug Resistance, Bacterial
  9. Rameshkumar MR, Arunagirinathan N, Swathirajan CR, Vignesh R, Balakrishnan P, Solomon SS
    Indian J Med Res, 2018 09;148(3):341-344.
    PMID: 30425226 DOI: 10.4103/ijmr.IJMR_730_17
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects; Drug Resistance, Bacterial/genetics
  10. Kurup A, Liau KH, Ren J, Lu MC, Navarro NS, Farooka MW, et al.
    Ann Med Surg (Lond), 2014 Sep;3(3):85-91.
    PMID: 25568794 DOI: 10.1016/j.amsu.2014.06.005
    Regional epidemiological data and resistance profiles are essential for selecting appropriate antibiotic therapy for intra-abdominal infections (IAIs). However, such information may not be readily available in many areas of Asia and current international guidelines on antibiotic therapy for IAIs are for Western countries, with the most recent guidance for the Asian region dating from 2007. Therefore, the Asian Consensus Taskforce on Complicated Intra-Abdominal Infections (ACT-cIAI) was convened to develop updated recommendations for antibiotic management of complicated IAIs (cIAIs) in Asia. This review article is based on a thorough literature review of Asian and international publications related to clinical management, epidemiology, microbiology, and bacterial resistance patterns in cIAIs, combined with the expert consensus of the Taskforce members. The microbiological profiles of IAIs in the Asian region are outlined and compared with Western data, and the latest available data on antimicrobial resistance in key pathogens causing IAIs in Asia is presented. From this information, antimicrobial therapies suitable for treating cIAIs in patients in Asian settings are proposed in the hope that guidance relevant to Asian practices will prove beneficial to local physicians managing IAIs.
    Matched MeSH terms: Drug Resistance, Bacterial
  11. Tay KH, Ariffin F, Sim BL, Chin SY, Sobry AC
    Malays J Med Sci, 2019 Jul;26(4):101-109.
    PMID: 31496899 MyJurnal DOI: 10.21315/mjms2019.26.4.12
    Background: Antimicrobial resistance is a global problem that is perpetuated by the inappropriate use of antibiotics among doctors. This study aims to assess the antibiotic prescription rate for patients with acute upper respiratory infection (URI) and acute diarrhoea.

    Methods: A completed clinical audit cycle was conducted in 2018 in the busy emergency department of a public hospital in Malaysia. Pre- and post-intervention antibiotic prescription data were collected, and changes were implemented through a multifaceted intervention similar to Thailand's Antibiotics Smart Use programme.

    Results: Data from a total of 1,334 pre-intervention and 1,196 post-intervention patients were collected from the hospital's electronic medical records. The mean (SD) age of participants was 19.88 (17.994) years. The pre-intervention antibiotic prescription rate was 11.2% for acute diarrhoea and 29.1% for acute URI, both of which are above the average national rates. These antibiotic prescription rates significantly reduced post-intervention to 6.2% and 13.7%, respectively, falling below national averages. Antibiotic prescription rate was highest for young children. There were no significant changes in rates of re-attendance or hospital admission following the intervention.

    Conclusion: The multifaceted intervention, which included continuing medical education, physician reminders and patient awareness, was effective in improving the antibiotic prescription rates for these two conditions.

    Matched MeSH terms: Drug Resistance, Bacterial
  12. Tiongco RE, Arceo E, Dizon D, Navarro A, Rivera N, Salita C, et al.
    Trop Biomed, 2018 Dec 01;35(4):1064-1074.
    PMID: 33601853
    Antimicrobial resistance is a worldwide public health concern. Rise in the number of antimicrobial resistant organisms, such as extended spectrum β-lactamase- (ESBL) and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae, continue to burden millions of people worldwide. E. coli and K. pneumoniae were isolated and collected for four months from a teaching hospital in the Philippines. All isolates were subjected to ESBL and carbapenemase testing using the double disk synergy test and modified Hodge test, respectively. Their pattern of resistance among different classes of antimicrobial agents was also investigated using the Kirby-Bauer disk diffusion test. Among the 32 clinical isolates tested, 28.1% were positive for ESBL production and 6.3% were positive for carbapenemase production. Species-specific classification showed that E. coli (44.4%) has the highest rate of ESBL production whereas both E. coli (5.6%) and K. pneumoniae (7.1%) showed almost similar rates of carbapenemase production. Antimicrobial resistance pattern of drug resistant isolates showed that all organisms were resistant to ampicillin, and majority showed resistance towards ciprofloxacin, cefotaxime, ceftriaxone, and sulfamethoxazole/trimethoprim. ESBL production is seen highest among E. coli isolates while similar rates of carbapenemase production was observed to both E. coli and K. pneumoniae isolates. Overall, antimicrobial resistance continues to rise and poses a huge threat in public health worldwide. Efforts should be made in developing rapid tests for antimicrobial resistance and to search for effective treatment from infections caused by multidrug resistant organisms.
    Matched MeSH terms: Drug Resistance, Bacterial
  13. Mohd Sazlly Lim S, Heffernan AJ, Roberts JA, Sime FB
    Microb Drug Resist, 2021 Apr;27(4):546-552.
    PMID: 32898467 DOI: 10.1089/mdr.2020.0197
    Background and Objective: Combination therapy may be a treatment option against carbapenem-resistant Acinetobacter baumannii (CR-AB) infections. In this study, we explored the utility of fosfomycin in combination with meropenem (FOS/MEM) against CR-AB isolates. Materials and Methods: Screening of synergistic activity of FOS/MEM was performed using the checkerboard assay. A pharmacokinetic/pharmacodynamic analysis was performed for various FOS/MEM regimens using Monte Carlo simulations. Results: The minimum inhibitory concentration (MIC) required to inhibit the growth of 50% of the isolates (MIC50) and MIC required to inhibit the growth of 90% of the isolates (MIC90) of FOS and MEM were reduced fourfold and twofold, respectively. The combination was synergistic against 14/50 isolates. No antagonism was observed. Sixteen out of fifty isolates had MEM MICs of ≤8 mg/L when subjected to combination therapy, compared to none with monotherapy. Forty-one out of 50 isolates had FOS MICs of ≤128 mg/L when subjected to combination therapy, compared to 17/50 isolates with monotherapy. The cumulative fraction response for MEM and FOS improved from 0% to 40% and 40% to 80%, with combination therapy, respectively. Conclusions: Addition of MEM improved the in vitro activity of FOS against the CR-AB isolates. FOS/MEM could be a plausible option to treat CR-AB for a small fraction of isolates.
    Matched MeSH terms: Drug Resistance, Bacterial*
  14. Mohd Sazlly Lim S, Heffernan AJ, Zowawi HM, Roberts JA, Sime FB
    Eur J Clin Microbiol Infect Dis, 2021 Sep;40(9):1943-1952.
    PMID: 33884516 DOI: 10.1007/s10096-021-04252-z
    Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are commonly used. In this study, we explored the potential efficacy of meropenem-sulbactam combination (MEM/SUL) against CR-AB. The checkerboard method was used to screen for synergistic activity of MEM/SUL against 50 clinical CR-AB isolates. Subsequently, time-kill studies against two CR-AB isolates were performed. Time-kill data were described using a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Subsequently, Monte Carlo simulations were performed to estimate the probability of 2-log kill, 1-log kill or stasis at 24-h following combination therapy. The MEM/SUL demonstrated synergy against 28/50 isolates. No antagonism was observed. The MIC50 and MIC90 of MEM/SUL were decreased fourfold, compared to the monotherapy MIC. In the time-kill studies, the combination displayed synergistic killing against both isolates at the highest clinically achievable concentrations. At concentrations equal to the fractional inhibitory concentration, synergism was observed against one isolate. The PK/PD model adequately delineated the data and the interaction between meropenem and sulbactam. The effect of the combination was driven by sulbactam, with meropenem acting as a potentiator. The simulations of various dosing regimens revealed no activity for the monotherapies. At best, the MEM/SUL regimen of 2 g/4 g every 8 h demonstrated a probability of target attainment of 2-log10 kill at 24 h of 34%. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that MEM/SUL may potentially be effective against some CR-AB infections.
    Matched MeSH terms: Drug Resistance, Bacterial*
  15. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Drug Resistance, Bacterial
  16. Song JH, Jung SI, Ko KS, Kim NY, Son JS, Chang HH, et al.
    Antimicrob Agents Chemother, 2004 Jun;48(6):2101-7.
    PMID: 15155207
    A total of 685 clinical Streptococcus pneumoniae isolates from patients with pneumococcal diseases were collected from 14 centers in 11 Asian countries from January 2000 to June 2001. The in vitro susceptibilities of the isolates to 14 antimicrobial agents were determined by the broth microdilution test. Among the isolates tested, 483 (52.4%) were not susceptible to penicillin, 23% were intermediate, and 29.4% were penicillin resistant (MICs >/= 2 mg/liter). Isolates from Vietnam showed the highest prevalence of penicillin resistance (71.4%), followed by those from Korea (54.8%), Hong Kong (43.2%), and Taiwan (38.6%). The penicillin MICs at which 90% of isolates are inhibited (MIC(90)s) were 4 mg/liter among isolates from Vietnam, Hong Kong, Korea, and Taiwan. The prevalence of erythromycin resistance was also very high in Vietnam (92.1%), Taiwan (86%), Korea (80.6%), Hong Kong (76.8%), and China (73.9%). The MIC(90)s of erythromycin were >32 mg/liter among isolates from Korea, Vietnam, China, Taiwan, Singapore, Malaysia, and Hong Kong. Isolates from Hong Kong showed the highest rate of ciprofloxacin resistance (11.8%), followed by isolates from Sri Lanka (9.5%), the Philippines (9.1%), and Korea (6.5%). Multilocus sequence typing showed that the spread of the Taiwan(19F) clone and the Spain(23F) clone could be one of the major reasons for the rapid increases in antimicrobial resistance among S. pneumoniae isolates in Asia. Data from the multinational surveillance study clearly documented distinctive increases in the prevalence rates and the levels of antimicrobial resistance among S. pneumoniae isolates in many Asian countries, which are among the highest in the world published to date.
    Matched MeSH terms: Drug Resistance, Bacterial*
  17. Adzitey F, Huda N, Shariff AHM
    Microorganisms, 2021 Feb 05;9(2).
    PMID: 33562804 DOI: 10.3390/microorganisms9020326
    Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.
    Matched MeSH terms: Drug Resistance, Bacterial
  18. Aisyhah MA, Amal MN, Zamri-Saad M, Siti-Zahrah A, Shaqinah NN
    J Fish Dis, 2015 Dec;38(12):1093-8.
    PMID: 25704397 DOI: 10.1111/jfd.12351
    Matched MeSH terms: Drug Resistance, Bacterial
  19. Jha N, Mudvari A, Hayat K, Shankar PR
    J Nepal Health Res Counc, 2023 Mar 09;20(3):689-696.
    PMID: 36974858 DOI: 10.33314/jnhrc.v20i3.3992
    BACKGROUND: Antimicrobial resistance is an important global problem resulting in an improper response of infections to antimicrobials and an increase in the duration and cost of treatment. Healthcare professionals play an important role in addressing Antimicrobial resistance and positive perception is important for involvement in antimicrobial stewardship policies. Hence the perception of key Healthcare professionals, including physicians, nurses, and hospital pharmacists, towards Antimicrobial resistance antimicrobial stewardship policies was studied.

    METHODS: A cross-sectional study was conducted in a tertiary care hospital at Lalitpur, from January to March 2021 using stratified random sampling. An online questionnaire was circulated to the selected Healthcare professionals. Median Antimicrobial resistance and antimicrobial stewardship policy scores were calculated and compared among different subgroups. Previous engagement with Antimicrobial resistance and antimicrobial stewardship policies programs was also noted. Descriptive statistics, Mann Whitney, and Kruskal Wallis tests were used for data analysis.

    RESULTS: The response rate was 89.3% (202/226). Antimicrobial resistance was regarded as a serious problem in the Nepali community by participants with work experience of 1-5 years, 87 (75.6%, p=0.029), and female participants, 62 (45.5%, p<0.001). Most physicians, females, and participants with working experience 1-5 years believed inappropriate use of antibiotics can harm patients and is professionally unethical. Physicians supported the availability of local antimicrobial guidelines and protocols. The median scores for Antimicrobial resistance (p<0.001) and Antimicrobial resistance eradication (p=0.048) differed according to age groups.

    CONCLUSIONS: Healthcare professionals believed Antimicrobial resistance was an important issue. Antibiotic guidelines developed should be strictly implemented. Healthcare professionals also believed inappropriate use of antibiotics can harm patients and is professionally unethical.

    Matched MeSH terms: Drug Resistance, Bacterial
  20. Janahiraman S, Aziz MN, Hoo FK, P'ng HS, Boo YL, Ramachandran V, et al.
    Pak J Med Sci, 2015 Nov-Dec;31(6):1383-8.
    PMID: 26870101 DOI: 10.12669/pjms.316.8445
    Antimicrobial resistance is a major health problem worldwide in hospitals. The main contributing factors are exposures to broad-spectrum antimicrobials and cross-infections. Understanding the extent and type of antimicrobial use in tertiary care hospitals will aid in developing national antimicrobial stewardship priorities.
    Matched MeSH terms: Drug Resistance, Bacterial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links