Displaying publications 61 - 80 of 150 in total

Abstract:
Sort:
  1. B Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Sep 16;12(9).
    PMID: 32947829 DOI: 10.3390/polym12092103
    This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device's performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
    Matched MeSH terms: Electric Conductivity
  2. M Nofal M, Aziz SB, Hadi JM, Abdulwahid RT, Dannoun EMA, Marif AS, et al.
    Materials (Basel), 2020 Oct 30;13(21).
    PMID: 33143345 DOI: 10.3390/ma13214890
    In this study, porous cationic hydrogen (H+) conducting polymer blend electrolytes with an amorphous structure were prepared using a casting technique. Poly(vinyl alcohol) (PVA), chitosan (CS), and NH4SCN were used as raw materials. The peak broadening and drop in intensity of the X-ray diffraction (XRD) pattern of the electrolyte systems established the growth of the amorphous phase. The porous structure is associated with the amorphous nature, which was visualized through the field-emission scanning electron microscope (FESEM) images. The enhancement of DC ionic conductivity with increasing salt content was observed up to 40 wt.% of the added salt. The dielectric and electric modulus results were helpful in understanding the ionic conductivity behavior. The transfer number measurement (TNM) technique was used to determine the ion (tion) and electron (telec) transference numbers. The high electrochemical stability up to 2.25 V was recorded using the linear sweep voltammetry (LSV) technique.
    Matched MeSH terms: Electric Conductivity
  3. Asnawi ASFM, B Aziz S, M Nofal M, Hamsan MH, Brza MA, Yusof YM, et al.
    Polymers (Basel), 2020 Jun 26;12(6).
    PMID: 32604910 DOI: 10.3390/polym12061433
    In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10-4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
    Matched MeSH terms: Electric Conductivity
  4. Brza MA, B Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842522 DOI: 10.3390/polym12091896
    In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
    Matched MeSH terms: Electric Conductivity
  5. Asnawi ASFM, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, et al.
    Polymers (Basel), 2021 Jan 26;13(3).
    PMID: 33530553 DOI: 10.3390/polym13030383
    The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10-5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
    Matched MeSH terms: Electric Conductivity
  6. Ahmad M, Roy RA, Kamarudin AG
    Int Endod J, 1994 Jan;27(1):26-31.
    PMID: 7806408
    The present study was undertaken to see if there was any variability in the power output of Piezon-Master 400 ultrasonic files when driven using different generators, tranducers and file holders. The displacement amplitude of the oscillating tip of the file in air was used as a measure of the power output. The results showed that there was considerable variability in the power output of Piezon-Master 400 ultrasonic files of similar size and length when driven using different generators, transducers and file holders. In consideration of this, it is recommended that a calibration device be incorporated in the ultrasonic unit so that the operator will have some knowledge of when the unit is working at its maximum efficiency.
    Matched MeSH terms: Electric Conductivity
  7. Al-Hardan NH, Abdul Hamid MA, Shamsudin R, Othman NK, Kar Keng L
    Sensors (Basel), 2016 Jun 29;16(7).
    PMID: 27367693 DOI: 10.3390/s16071004
    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H₂O₂), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H₂O₂ concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H₂O₂ concentrations (first region), and a LOD of 143.5 μM for the higher range of H₂O₂ concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H₂O₂ and revealed a good performance for the ZnO NR non-enzymatic H₂O₂ sensor.
    Matched MeSH terms: Electric Conductivity
  8. Sa'adun NN, Subramaniam R, Kasi R
    ScientificWorldJournal, 2014;2014:254215.
    PMID: 25431781 DOI: 10.1155/2014/254215
    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10(-6) S cm(-1) for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively.
    Matched MeSH terms: Electric Conductivity*
  9. Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA
    ACS Biomater Sci Eng, 2023 Jul 10;9(7):4045-4085.
    PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194
    Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
    Matched MeSH terms: Electric Conductivity
  10. Suen JW, Elumalai NK, Debnath S, Mubarak NM, Lim CI, Reddy Moola M, et al.
    Molecules, 2023 Jul 04;28(13).
    PMID: 37446854 DOI: 10.3390/molecules28135192
    Ionogels are hybrid materials comprising an ionic liquid confined within a polymer matrix. They have garnered significant interest due to their unique properties, such as high ionic conductivity, mechanical stability, and wide electrochemical stability. These properties make ionogels suitable for various applications, including energy storage devices, sensors, and solar cells. However, optimizing the electrochemical performance of ionogels remains a challenge, as the relationship between specific capacitance, ionic conductivity, and electrolyte solution concentration is yet to be fully understood. In this study, we investigate the impact of electrolyte solution concentration on the electrochemical properties of ionogels to identify the correlation for enhanced performance. Our findings demonstrate a clear relationship between the specific capacitance and ionic conductivity of ionogels, which depends on the availability of mobile ions. The reduced number of ions at low electrolyte solution concentrations leads to decreased ionic conductivity and specific capacitance due to the scarcity of a double layer, constraining charge storage capacity. However, at a 31 vol% electrolyte solution concentration, an ample quantity of ions becomes accessible, resulting in increased ionic conductivity and specific capacitance, reaching maximum values of 58 ± 1.48 μS/cm and 45.74 F/g, respectively. Furthermore, the synthesized ionogel demonstrates a wide electrochemical stability of 3.5 V, enabling diverse practical applications. This study provides valuable insights into determining the optimal electrolyte solution concentration for enhancing ionogel electrochemical performance for energy applications. It highlights the impact of ion pairs and aggregates on ion mobility within ionogels, subsequently affecting their resultant electrochemical properties.
    Matched MeSH terms: Electric Conductivity
  11. Rahman NA, Abu Hanifah S, Mobarak NN, Su'ait MS, Ahmad A, Shyuan LK, et al.
    PLoS One, 2019;14(2):e0212066.
    PMID: 30768616 DOI: 10.1371/journal.pone.0212066
    For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume. Its potential as biopolymer electrolytes was studied. The substitution of nitro group was analyzed by using Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) analysis, Nuclear Magnetic Resonance (NMR) and Elemental Analysis (CHNS). The structure was characterized by X-ray Diffraction (XRD) and its thermal properties were examined by using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Whereas, the ionic conductivity of the samples was analyzed by electrochemical impedance spectroscopy (EIS). From the IR spectrum results, the nitro group peaks of O-nitrochitosan, positioned at 1646 and 1355 cm-1, were clearly seen for all pH media. At pH 6, O-nitrochitosan exhibited the highest degree of substitution at 0.74 when analyzed by CHNS analysis and NMR further proved that C-6 of glucosamine ring was shifted to the higher field. However, the thermal stability and glass transition temperatures were decreased with acidic condition. The highest ionic conductivity of O-nitrochitosan was obtained at ~10-6 cm-1. Overall, the electrochemical property of new O-nitrochitosan showed a good improvement as compared to chitosan and other chitosan derivatives. Hence, O-nitrochitosan is a promising biopolymer electrolyte and has the potential to be applied in electrochemical devices.
    Matched MeSH terms: Electric Conductivity
  12. Akbari E, Buntat Z, Shahraki E, Parvaz R, Kiani MJ
    J Biomater Appl, 2016 Jan;30(6):677-85.
    PMID: 26024896 DOI: 10.1177/0885328215585682
    Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.
    Matched MeSH terms: Electric Conductivity
  13. Lim LL, Fu AWC, Lau ESH, Ozaki R, Cheung KKT, Ma RCW, et al.
    Nephrol Dial Transplant, 2019 Aug 01;34(8):1320-1328.
    PMID: 29939305 DOI: 10.1093/ndt/gfy154
    BACKGROUND: Early detection and risk factor control prevent chronic kidney disease (CKD) progression. Evaluation of peripheral autonomic dysfunction may detect incident cardiovascular-renal events in type 2 diabetes (T2D).

    METHODS: SUDOSCAN, a non-invasive tool, provides an age-adjusted electrochemical skin conductance (ESC) composite score incorporating hands/feet ESC measurements, with a score ≤53 indicating sudomotor dysfunction. A consecutive cohort of 2833 Chinese adults underwent structured diabetes assessment in 2012-13; 2028 participants without preexisting cardiovascular disease (CVD) and CKD were monitored for incident cardiovascular-renal events until 2015.

    RESULTS: In this prospective cohort {mean age 57.0 [standard deviation (SD) 10.0] years; median T2D duration 7.0 [interquartile range (IQR) 3.0-13.0] years; 56.1% men; 72.5% never-smokers; baseline ESC composite score 60.7 (SD 14.5)}, 163 (8.0%) and 25 (1.2%) participants developed incident CKD and CVD, respectively, after 2.3 years of follow-up. The adjusted hazard ratios (aHRs) per 1-unit decrease in the ESC composite score for incident CKD, CVD and all-cause death were 1.02 [95% confidence interval (CI) 1.01-1.04], 1.04 (1.00-1.07) and 1.04 (1.00-1.08), respectively. Compared with participants with an ESC composite score >53, those with a score ≤53 had an aHR of 1.56 (95% CI 1.09-2.23) for CKD and 3.11 (95% CI 1.27-7.62) for CVD, independent of common risk markers. When added to clinical variables (sex and duration of diabetes), the ESC composite score improved discrimination of all outcomes with appropriate reclassification of CKD risk.

    CONCLUSIONS: A low ESC composite score independently predicts incident cardiovascular-renal events and death in T2D, which may improve the screening strategy for early intervention.

    Matched MeSH terms: Electric Conductivity
  14. Bulmer JS, Martens J, Kurzepa L, Gizewski T, Egilmez M, Blamire MG, et al.
    Sci Rep, 2014 Jan 21;4:3762.
    PMID: 24446019 DOI: 10.1038/srep03762
    Recent progress with tailored growth and post-process sorting enables carbon nanotube (CNT) assemblies with predominantly metallic or semi-conducting concentrations. Cryogenic and microwave measurements performed here show transport dimensionality and overall order increasing with increasing metallic concentration, even in atmospheric doping conditions. By 120 GHz, the conductivity of predominantly semi-conducting assemblies grew to 400% its DC value at an increasing growth rate, while other concentrations a growth rate that tapered off. A generalized Drude model fits to the different frequency dependent behaviors and yields useful quality control parameters such as plasma frequency, mean free path, and degree of localization. As one of the first demonstrations of waveguides fabricated from this material, sorted CNTs from both as-made and post-process sources were inserted into sections of practical micro-strip. With both sources, sorted CNT micro-strip increasingly outperformed the unsorted with increasing frequency-- illustrating that sorted CNT assemblies will be important for high frequency applications.
    Matched MeSH terms: Electric Conductivity*
  15. Zielinski MS, Vardar E, Vythilingam G, Engelhardt EM, Hubbell JA, Frey P, et al.
    Commun Biol, 2019;2:69.
    PMID: 30793047 DOI: 10.1038/s42003-019-0313-x
    By analyzing isolated collagen gel samples, we demonstrated in situ detection of spectrally deconvoluted auto-cathodoluminescence signatures of specific molecular content with precise spatial localization over a maximum field of view of 300 µm. Correlation of the secondary electron and the hyperspectral images proved ~40 nm resolution in the optical channel, obtained due to a short carrier diffusion length, suppressed by fibril dimensions and poor electrical conductivity specific to their organic composition. By correlating spectrally analyzed auto-cathodoluminescence with mass spectroscopy data, we differentiated spectral signatures of two extracellular matrices, namely human fibrin complex and rat tail collagen isolate, and uncovered differences in protein distributions of isolated extracellular matrix networks of heterogeneous populations. Furthermore, we demonstrated that cathodoluminescence can monitor the progress of a human cell-mediated remodeling process, where human collagenous matrix was deposited within a rat collagenous matrix. The revealed change of the heterogeneous biological composition was confirmed by mass spectroscopy.
    Matched MeSH terms: Electric Conductivity
  16. Ahsan MR, Islam MT, Habib Ullah M, Mahadi WN, Latef TA
    ScientificWorldJournal, 2014;2014:909854.
    PMID: 25165750 DOI: 10.1155/2014/909854
    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
    Matched MeSH terms: Electric Conductivity
  17. Bien DC, Saman RM, Badaruddin SA, Lee HW
    Nanoscale Res Lett, 2011;6(1):543.
    PMID: 21970543 DOI: 10.1186/1556-276X-6-543
    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.
    Matched MeSH terms: Electric Conductivity
  18. Rayung M, Aung MM, Su'ait MS, Chuah Abdullah L, Ahmad A, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14267-14274.
    PMID: 32596563 DOI: 10.1021/acsomega.9b04348
    Biobased polymers are useful materials in substituting conventional petroleum-derived polymers because of their good properties, ready availability, and abundance in nature. This study reports a new jatropha oil-based gel polymer electrolyte (GPE) for use in dye-sensitized solar cells (DSSCs). The GPE was prepared by mixing jatropha oil-based polyurethane acrylate (PUA) with different concentrations of lithium iodide (LiI). The GPE was characterized by infrared spectroscopy, thermal analysis, lithium nuclear magnetic resonance analysis, electrochemical analysis, and photocurrent conversion efficiency. The highest room-temperature ionic conductivity of 1.88 × 10-4 S cm-1 was obtained at 20 wt % of LiI salt. Additionally, the temperature-dependent ionic conductivity of the GPE exhibited Arrhenius behavior with an activation energy of 0.42 eV and a pre-exponential factor of 1.56 × 103 S cm-1. The electrochemical stability study showed that the PUA GPE was stable up to 2.35 V. The thermal stability of the gel electrolyte showed an improvement after the addition of the salt, suggesting a strong intermolecular interaction between PUA and Li, which leads to polymer-salt complexation, as proven by Fourier transform infrared spectroscopy analysis. A DSSC has been assembled using the optimum ionic conductivity gel electrolyte which indicated 1.2% efficiency under 1 sun condition. Thus, the jatropha oil-based GPE demonstrated favorable properties that make it a promising alternative to petroleum-derived polymer electrolytes in DSSCs.
    Matched MeSH terms: Electric Conductivity
  19. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
    Matched MeSH terms: Electric Conductivity
  20. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Electric Conductivity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links