Displaying publications 61 - 80 of 892 in total

Abstract:
Sort:
  1. Nioo, Siew Yew, Zaharuddin Ahmad, Masni Mohd Ali, Che Abd Rahim Mohamed
    MyJurnal
    Analyses activities of 226 Ra and 228 Ra were conducted at ten stations of Pulau Redang, Malaysia. Dissolved radium isotopes such as 226 Ra and 228 Ra had shown enrichment at coastal area stations. Meanwhile, activities of both nuclides in the suspended particle matters were slightly in equilibrium with the activity ratio ranging from 0.88 – 1.86. The calculated distribution coefficient values (Kd) of 226 Ra and 228 Ra were in the range of 0.78 x 10 5 L g -1 to 5.56 x 10 5 L g -1 and 0.21 x 10 5 L g -1 to 1.86 x 10 5 L g -1 , respectively, indicate that most of the radium nuclides in the study area are strongly absorbed into the particulate phases. Therefore, low concentrations of suspended particles matter in the water column (< 10 mg L -1 ) have insignificant effects on the Kd values.
    Matched MeSH terms: Environmental Monitoring
  2. Yap CK, Ismail A, Cheng WH, Tan SG
    Ecotoxicol Environ Saf, 2006 Mar;63(3):413-23.
    PMID: 16406592
    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.
    Matched MeSH terms: Environmental Monitoring*
  3. Azrina MZ, Yap CK, Rahim Ismail A, Ismail A, Tan SG
    Ecotoxicol Environ Saf, 2006 Jul;64(3):337-47.
    PMID: 15964072
    A study of the impacts of anthropogenic activities on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River (Peninsular Malaysia) was conducted. Four pristine stations from the upstream and 4 stations at the downstream receiving anthropogenic impacts were selected along the river. For 4 consecutive months (March-June 1999), based on the Malaysian DOE (Malaysia Environmental Quality Report 2000, Department of Environment, Ministry of Science, Technology and Environment Malaysia. Maskha Sdn. Bhd. Kuala Lumpur, 86pp; Malaysia Environmental Quality Report 2001, Department of Environment, Ministry of Science, Technology and the Environment Malaysia) water quality index classes, the upstream stations recorded significantly (P<0.05) higher Biological Monitoring Working Party scores and better water quality indices than those of the downstream. The total number of macrobenthic taxa and their overall richness indices and diversity indices were significantly (P<0.05) higher at the upstream stations (54 taxa) than at the downstream stations (5 taxa). The upstream of the Langat River was dominated by Ephemeroptera and chironomid dipterans while other orders found in small quantities included Trichoptera, Diptera, Plecoptera, Odonata, Ephemeraptera, Coleoptera, and Gastropoda. On the other hand, the downstream of the river was mainly inhabited by the resistant Oligochaeta worms Limnodrilus spp. and Branchiodrilus sp. and Hirudinea in small numbers. The relationships between the physicochemical and the macrobenthic data were investigated by Pearson correlation analysis and multiple stepwise regression analysis. These statistical analyses showed that the richness and diversity indices were generally influenced by the total suspended solids and the conductivity of the river water. This study also highlighted the impacts of anthropogenic land-based activities such as urban runoff on the distribution and species diversity of macrobenthic invertebrates in the downstream of the Langat River. The data obtained in this study supported the use of the bioindicator concept for Malaysian rivers. Some sensitive (Trichopteran caddisflies and Ephemeraptera) and resistant species (Oligochaeta such as Limnodrilus spp.) are identified as potential bioindicators of clean and polluted river ecosystems, respectively, for Malaysian rivers.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Chang KF, Fang GC, Chen JC, Wu YS
    Environ Pollut, 2006 Aug;142(3):388-96.
    PMID: 16343719
    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Azlan CA, Ng KH, Anandan S, Nizam MS
    Australas Phys Eng Sci Med, 2006 Sep;29(3):278-80.
    PMID: 17058591
    Illuminance level in the softcopy image viewing room is a very important factor to optimize productivity in radiological diagnosis. In today's radiological environment, the illuminance measurements are normally done during the quality control procedure and performed annually. Although the room is equipped with dimmer switches, radiologists are not able to decide the level of illuminance according to the standards. The aim of this study is to develop a simple real-time illuminance detector system to assist the radiologists in deciding an adequate illuminance level during radiological image viewing. The system indicates illuminance in a very simple visual form by using light emitting diodes. By employing the device in the viewing room, illuminance level can be monitored and adjusted effectively.
    Matched MeSH terms: Environmental Monitoring/instrumentation*; Environmental Monitoring/methods
  6. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D
    PMID: 17333767
    The bioefficacy of indoor residual-sprayed deltamethrin wettable granule (WG) formulation at 25 mg a.i./m2 and 20 mg a.i./m2 for the control of malaria was compared with the current dose of 20 mg/m2 deltamethrin wettable powder (WP) in aboriginal settlements in Kuala Lipis, Pahang, Malaysia. The malaria vector has been previously identified as Anopheles maculatus. The assessment period for the 20 mg/m2 dosage was six months, but for the 25 mg/m2 dosage, the period was 9 months. Collections of mosquitoes using the bare-leg techniques were carried out indoors and outdoors from 7:00 PM to 7:00 AM. All mosquitoes were dissected for sporozoites and parity. Larval collections were carried out at various locations to assess the extent and distribution of breeding of vectors. A high incidence of human feeds was detected during May 2005 and a low incidence during January 2005 for all the study areas. Our study showed that deltamethrin WG at 25 mg/m2 suppressed An. maculatus biting activity. More An. maculatus were caught in outdoor landing catches than indoor landing catches for all the study areas. The results indicate that 25 mg/m2 WG is good for controlling malaria for up to 9 months. Where residual spraying is envisaged, the usual two spraying cycles per year with 20 mg/m2 deltamethrin may be replaced with 25 mg/m2 deltamethrin WG every 9 months.
    Matched MeSH terms: Environmental Monitoring
  7. Haron S, Ray AK
    Med Eng Phys, 2006 Dec;28(10):978-81.
    PMID: 17018258
    A three layer waveguiding silicon dioxide (SiO(2))/silicon nitride (Si(3)N(4))/SiO(2) structure on silicon substrate was proposed as an optically efficient biosensor for calibration of heavy metal ions in drinking water. The catalytic activities of urease and acetylcholine esterase (AchE) were inhibited by the presence of cadmium (Cd(2+)) and lead (Pb(2+)) ions. The detection limit as low as 1 ppb was achieved by employing the technique of total reflection at the interface between the Si(3)N(4) core and composite polyelectrolyte self-assembled (PESA) membranes containing cyclotetrachromotropylene (CTCT) as an indicator.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Soda W, Noble AD, Suzuki S, Simmons R, Sindhusen LA, Bhuthorndharaj S
    J Environ Qual, 2006 Oct 27;35(6):2293-301.
    PMID: 17071900
    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.
    Matched MeSH terms: Environmental Monitoring*
  9. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Inayat-Hussain SH, Lubis SH, Sakian NI, Ghazali AR, Ali NS, El Sersi M, et al.
    Toxicol Appl Pharmacol, 2007 Mar;219(2-3):210-6.
    PMID: 17140616
    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma beta-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The beta-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasma cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma beta-glucuronidase activity was measured fluorometrically based on beta-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p<0.05) among the patients (1386.786+/-791.291 U/L/min) but the inhibition in plasma cholinesterase activity among the farmers (7346.5+/-1860.786 U/L/min) was not significant (p>0.05). The plasma beta-glucuronidase activity among the farmers was significantly elevated (p<0.05) (0.737+/-0.425 microM/h) but not significant among the patients (p>0.05). The plasma cholinesterase activity was positively correlated with the plasma beta-glucuronidase activity among the farmers (r=0.205, p<0.01) but not among the patients (r=0.79, p>0.05). Thus, plasma beta-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma beta-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning.
    Matched MeSH terms: Environmental Monitoring*
  11. Yap CK, Chua BH, Teh CH, Tan SG, Ismail A
    Genetika, 2007 May;43(5):668-74.
    PMID: 17633561
    Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique namely Random Amplified Polymorphic DNA (RAPD) to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively' uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA done based on the RAPD makers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P < 0.01) correlations between the primers and the heavy metal concentrations in the byssus and soft tissues. Thus, the correlation between a particular metal and the bands resulting from the use of a specific RAPD primer on P. viridis could be used as biomonitoring tool of heavy metal pollution.
    Matched MeSH terms: Environmental Monitoring
  12. Shuhaimi-Othman M, Lim EC, Mushrifah I
    Environ Monit Assess, 2007 Aug;131(1-3):279-92.
    PMID: 17171269
    A study of the water quality changes of Chini Lake was conducted for 12 months, which began in May 2004 and ended in April 2005. Fifteen sampling stations were selected representing the open water body in the lake. A total of 14 water quality parameters were measured and Malaysian Department of Environment Water Quality Index (DOE-WQI) was calculated and classified according to the Interim National Water Quality Standard, Malaysia (INWQS). The physical and chemical variables were temperature, dissolved oxygen (DO), conductivity, pH, total dissolved solid (TDS), turbidity, chlorophyll-a, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), ammonia-N, nitrate, phosphate and sulphate. Results show that base on Malaysian WQI, the water in Chini Lake is classified as class II, which is suitable for recreational activities and allows body contact. With respect to the Interim National Water Quality Standard (INWQS), temperature was within the normal range, conductivity, TSS, nitrate, sulphate and TDS are categorized under class I. Parameters for DO, pH, turbidity, BOD, COD and ammonia-N are categorized under class II. Comparison with eutrophic status indicates that chlorophyll-a concentration in the lake was in mesotrophic condition. In general water quality in Chini Lake varied temporally and spatially, and the most affected water quality parameters were TSS, turbidity, chlorophyll-a, sulphate, DO, ammonia-N, pH and conductivity.
    Matched MeSH terms: Environmental Monitoring/methods; Environmental Monitoring/statistics & numerical data
  13. Ishii S, Bell JN, Marshall FM
    Environ Pollut, 2007 Nov;150(2):267-79.
    PMID: 17379364
    The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions.
    Matched MeSH terms: Environmental Monitoring/methods
  14. Isobe T, Takada H, Kanai M, Tsutsumi S, Isobe KO, Boonyatumanond R, et al.
    Environ Monit Assess, 2007 Dec;135(1-3):423-40.
    PMID: 17370135
    A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994-1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as "low to moderate" levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.
    Matched MeSH terms: Environmental Monitoring*
  15. Teh L, Cabanban AS
    J Environ Manage, 2007 Dec;85(4):999-1008.
    PMID: 17204361
    A priori assessments of a site's biophysical and socio-economic capacity for accommodating tourism are less common than tourism impact studies. A priori evaluations can provide a contextual understanding of ecological, economic and socio-cultural forces, which shape the prospects for sustainable tourism development at the host destination, and can avert adverse impacts of tourism. We conduct an a priori assessment of the biophysical environment of Pulau Banggi, in the Malaysian state of Sabah for sustainable tourism development. We characterise baseline conditions of the island's marine biodiversity, seasonality, and infrastructure. We then evaluate how existing biophysical conditions will influence options for sustainable tourism development. In particular, we suggest conditions, if there are any, which constitute a limit to future tourism development in terms of compatibility for recreation and resilience to visitor impacts. We find that the biggest constraint is the lack of adequate water and sanitation infrastructure. Blast fishing, although occurring less than once per hour, can potentially destroy the major attraction for tourists. We conclude that while Pulau Banggi possesses natural qualities that are attractive for ecotourism, financial and institutional support must be made available to provide facilities and services that will enable local participation in environmental protection and enhance prospects for future sustainable tourism.
    Matched MeSH terms: Environmental Monitoring/economics; Environmental Monitoring/methods*
  16. Nazahiyah R, Yusop Z, Abustan I
    Water Sci Technol, 2007;56(7):1-9.
    PMID: 17951862
    Sampling of urban runoff was carried out in a small catchment, which represents a residential area (3.34 ha) in Skudai, Johor. One hundred and seventeen runoff samples from ten storm events were analysed. Runoff quality showed large variations in concentrations during storms, especially for SS, BOD5 and COD. Concentrations of NO3-N, NO2-N, NH3-N, and P were also high. Lead (Pb) was also detected but the levels were low (<0.001 mg/L). In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event mean concentrations for all parameters were found to vary greatly between storms. The values (mg/L) were BOD5 (72), COD (325), SS (386), NO3-N (2.5), NO2-N (0.58), NH3-N (6.8), P (3.4), respectively. First flush phenomena were observed for BOD, COD, SS, NO3-N, NH3-N and P. The first 20-30% of the runoff volume evacuated between 20-59% BOD, 15-69% COD, 15-78% SS, 14-49% NO3-N, 14-19% NO2-N, 23-53% NH3-N and 23-43% P.
    Matched MeSH terms: Environmental Monitoring
  17. Azwan A., Rusli N., Nik Khairol Reza M.Y., Ahmad Syaarani Y., Edimansyah A., Mazalisah M., et al.
    MyJurnal
    Heat stress is considered to be the sum of heat generated in the body (metabolic heat) plus the heat gained from the environment (environmental heat) minus the heat lost from the body to the environment. The consequences of heat stress can caused heat disorder such as heat stroke, heat syncope, heat exhaustion, heat cramps and other heat related diseases. The objective of this study was to compare the pattern of heat stress in each section. A crosssectional study was carried out in two sections (Paintshop A and Bodyshop B) in a selected automotive assembly plant in Selangor to monitor the environmental heat stress. The environmental heat monitoring was done on 89 March 2005. Heat stress monitor (Model: QUESTemp o 34 Thermal Environment Monitor, Quest Technologies, USA) was used to record the pattern of heat exposure in the workplace over a period of eight hours. Heat parameters such as dry temperature, wet temperature, globe temperature and relative humidity were measured. Wet Bulb Globe Temperature index (WBGT) and workload evaluation were used to compare both sections. Heat parameters such as timeweighted average wet bulb globe temperature for indoor setting (TWAWBGT indoor ), dry temperature (DB), natural wet bulb temperature (WB), globe temperature (GB) in Paintshop A were higher than those in Bodyshop B. The relative humidity in Paintshop A was hotdry compared to Bodyshop B which is hotwarm. Paintshop A was considered a hot area compared to Bodyshop B which is normal. Workers in both sections were not faced with heat stress problems because they were worked under acceptable condition according to American Conference of Governmental Industrial Hygienists standard. Both sections in the automotive assembly plant exhibited acceptable working condition for workers in a tropical environment.
    Matched MeSH terms: Environmental Monitoring
  18. Abbas Alkarkhi FM, Ismail N, Easa AM
    J Hazard Mater, 2008 Feb 11;150(3):783-9.
    PMID: 17590506
    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers.
    Matched MeSH terms: Environmental Monitoring/statistics & numerical data*
  19. Cuong DT, Karuppiah S, Obbard JP
    Environ Monit Assess, 2008 Mar;138(1-3):255-72.
    PMID: 17562200
    Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore's coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34-2.04, 0.013-0.109, 0.07-0.35, 0.23-1.16, 0.28-0.78, 0.009-0.062 and 0.97-3.66 microg L(-1) respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16-0.73, 6.72-53.93, 12.87-118.29, 4.34-60.71, 1.10-6.08 and 43.09-370.49 microg g(-1), respectively. Heavy metal concentrations in sediments ranged between 0.054-0.217, 37.48-50.52, 6.30-21.01, 13.27-26.59, 24.14-37.28 and 48.20-62.36 microg g(-1) for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.
    Matched MeSH terms: Environmental Monitoring
  20. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
    Matched MeSH terms: Environmental Monitoring
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links