Displaying publications 61 - 80 of 170 in total

Abstract:
Sort:
  1. Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, et al.
    Front Chem, 2020;8:685.
    PMID: 32903703 DOI: 10.3389/fchem.2020.00685
    We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5


    D


    0







    7


    F1) and -0.0059 at 613 nm (5


    D


    0







    7


    F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5


    D


    4







    7


    F6), +0.0078 at 540 nm (5


    D


    4







    7


    F5), and -0.0018 at 552 nm (5


    D


    4







    7


    F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
    Matched MeSH terms: Esters
  2. Fatin SN, Boon-Khai T, Shu-Chien AC, Khairuddean M, Al-Ashraf Abdullah A
    Front Microbiol, 2017;8:2267.
    PMID: 29201023 DOI: 10.3389/fmicb.2017.02267
    The resistance of Pseudomonas aeruginosa to conventional antimicrobial treatment is a major scourge in healthcare. Therefore, it is crucial that novel potent anti-infectives are discovered. The aim of the present study is to screen marine actinomycetes for chemical entities capable of overcoming P. aeruginosa infection through mechanisms involving anti-virulence or host immunity activities. A total of 18 actinomycetes isolates were sampled from marine sediment of Songsong Island, Kedah, Malaysia. Upon confirming that the methanolic crude extract of these isolates do not display direct bactericidal activities, they were tested for capacity to rescue Caenorhabditis elegans infected with P. aeruginosa strain PA14. A hexane partition of the extract from one isolate, designated as Streptomyces sp. CCB-PSK207, could promote the survival of PA14 infected worms by more than 60%. Partial 16S sequence analysis on this isolate showed identity of 99.79% with Streptomyces sundarbansensis. This partition did not impair feeding behavior of C. elegans worms. Tested on PA14, the partition also did not affect bacterial growth or its ability to colonize host gut. The production of biofilm, protease, and pyocyanin in PA14 were uninterrupted, although there was an increase in elastase production. In lys-7::GFP worms, this partition was shown to induce the expression of lysozyme 7, an important innate immunity defense molecule that was repressed during PA14 infection. GC-MS analysis of the bioactive fraction of Streptomyces sp. CCB-PSK207 revealed the presence of methyl esters of branched saturated fatty acids. In conclusion, this is the first report of a marine actinomycete producing metabolites capable of rescuing C. elegans from PA14 through a lys-7 mediated activity.
    Matched MeSH terms: Esters
  3. Asmah, R., Siti Sumaiyah, S.A., Nurul, S.R.
    MyJurnal
    Omega-3 fatty acids have been shown to reduce the risk of chronic diseases like cardiovascular disease and cancer as well as promote brain development among infants and children. This study was carried out to compare total protein, fat and omega-3 fatty acids content of raw and pressurized fish of P. pangasius (yellowtail catfish) and H. macrura (long tail shad). The fish was cooked using pressure cooker for six minute to be pressurized. The protein content was determined by using Kjedahl method while total fat was determined using solvent extraction using chloroform and methanol. Fatty acid methyl esters (FAME) were prepared by a direct transesterification method, and quantified by gas chromatography using external standard. Results showed that marine fish H. macrura (long tail shad) had higher content (p < 0.05) of protein (18.30 ± 0.040 g/100 g), fat (10.965 ± 1.610 g/100 g), EPA (11.83 ± 0.02 g/100 g) and DHA (5.96 ± 0.31 g/100 g) compared to freshwater fish P. pangasius (yellowtail catfish). The protein content of pressurized fish was higher compare to raw fish, but there was no difference in total fat and omega-3 fatty acids content between raw and pressurized of freshwater fish P. pangasius and marine fish, H. macrura. In conclusion, marine fish are better source of protein, fat and omega-3 content, while pressurized fish shown to have comparable amount of protein, fat and omega-3 fatty acids content with raw fish. The result obtained assist the consumers to prepare a healthy menu in order to retain the protein and omega-3 fatty acids content of fish through healthy way of cooking.
    Matched MeSH terms: Esters
  4. Nur Aimi, R., Abu Bakar, F., Dzulkifly, M.H.
    MyJurnal
    Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
    It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
    (15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.
    Matched MeSH terms: Esters
  5. Barling, Peter Micheal, YI, Huan Foong
    MyJurnal
    Keriorrhoea is the involuntarily passing of orange oil per rectum. One of us (PMB) had the misfortune to experience this symptom, together with considerable gastrointestinal disturbances for a prolonged period of time after consumption of a deep sea fish, orange roughy, which is rich in liquid wax esters (LWEs). This paper presents a summary of available evidence concerned with the physiology and pathology of ingestion of LWEs, which can enter the human diet in substantial amounts from consumption of several species of deep-sea fish. LWEs are poorly digested and absorbed by the human body. They generally cause keriorrhoea when ingested deliberately or accidentally. Jojoba oil, which is a plant LWE, together with certain nutritional products (e.g. olestra) and medical (e.g. Orlistat) which are not LWEs may mimic the effects of LWEs, and cause similar gastrointestinal disturbances. This paper discusses the potential effects of LWEs as components of gastrointestinal micelles, and predicts that the orange oil which is leaked from a bout of keriorrhoea may contain considerable volumes of triacylglycerols (TAGs).
    Matched MeSH terms: Esters
  6. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS
    Int J Biol Macromol, 2020 Oct 15;161:503-513.
    PMID: 32534088 DOI: 10.1016/j.ijbiomac.2020.06.069
    Chitosan (CS) was physically modified with fly ash (FA) powder and subjected to chemical cross-linking reaction with tripolyphosphate (TPP) to produce a cross-linked CS-TPP/FA composite as adsorbent for removal of reactive orange 120 (RR120) dye. Different ratios of FA such as 25% FA particles (CS-TPP/FA-25) and 50% FA particles (CS-TPP/FA-50) were loaded into the molecular structure of CS-TPP. Box-Behnken design (BBD) was applied to optimize the input variables that affected the synthesis of the adsorbent and the adsorption of RR120 dye. These variables included FA loading (A: 0-50%), adsorbent dose (B: 0.04-0.1 g), solution pH (C: 4-10), temperature (D: 30 °C-60 °C), and time (E: 30-90 min). Results revealed that the highest removal (88.8%) of RR120 dye was achieved by CS-TPP/FA-50 at adsorbent dosage of 0.07 g, solution of pH 4, temperature of 45 °C, and time of 60 min. The adsorption equilibrium was described by the Freundlich model, with 165.8 mg/g at 45 °C as the maximum adsorption capacity of CS-TPP/FA-50 for RR120 dye. This work introduces CS-TPP/FA-50 as an ideal composite adsorbent for removal of textile dyes from the aqueous environment.
    Matched MeSH terms: Sulfuric Acid Esters/chemistry
  7. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Sulfuric Acid Esters/chemistry*
  8. Tay BY
    Int J Cosmet Sci, 2013 Feb;35(1):57-63.
    PMID: 22994145 DOI: 10.1111/ics.12004
    A simple and rapid gas chromatography (GC) method with flame ionization detector was developed for detection of isopropyl para-toluenesulphonate (IPTS) in palm-based isopropyl palmitate (IPP) and isopropyl myristate (IPM). The method involved spiking the IPP/IPM samples with IPTS and directly injecting the spiked samples into GC without undergoing clean-up steps. The calibration curves for IPTS showed good linearity with coefficient correlation of 0.9999 for six-point calibration from 0.5 to 50 μg mL(-1) and 0.9996 for six-point calibration from 0.5 to 200 μg mL(-1) . IPTS recoveries from IPP were 98.6-103.5% with relative standard deviation (RSD) of 0.40-2.80%, whereas recoveries from IPM were 97.0-107.2% with RSD of 0.42-4.21%. The identity of IPTS recovered from the isopropyl esters was confirmed by a GC-mass spectrometer detector. The method was successfully applied to the analyses of IPTS in commercial samples. It was found that there were IPTS in the range of 34.8-1303.0 μg g(-1) in the palm-based esters for some of the samples analysed.
    Matched MeSH terms: Esters/chemistry*
  9. Cheong JN, Mirhosseini H, Tan CP
    Int J Food Sci Nutr, 2010 Jun;61(4):417-24.
    PMID: 20151850 DOI: 10.3109/09637481003591574
    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
    Matched MeSH terms: Esters/chemistry
  10. Najjar A, Abdullah N, Saad WZ, Ahmad S, Oskoueian E, Abas F, et al.
    Int J Mol Sci, 2014;15(2):2274-88.
    PMID: 24504029 DOI: 10.3390/ijms15022274
    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.
    Matched MeSH terms: Phorbol Esters/toxicity; Phorbol Esters/chemistry*
  11. Oskoueian E, Abdullah N, Ahmad S
    Int J Mol Sci, 2012;13(11):13816-29.
    PMID: 23203036 DOI: 10.3390/ijms131113816
    The direct feeding of Jatropha meal containing phorbol esters (PEs) indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang) and African green monkey kidney (Vero) cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC(50) of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA) values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC(50) concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.
    Matched MeSH terms: Phorbol Esters/isolation & purification; Phorbol Esters/pharmacology*
  12. Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW
    Int J Mol Sci, 2011;12(9):5955-70.
    PMID: 22016638 DOI: 10.3390/ijms12095955
    Defatted Jatropha curcas L. (J. curcas) seed kernels contained a high percentage of crude protein (61.8%) and relatively little acid detergent fiber (4.8%) and neutral detergent fiber (9.7%). Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC) analyses showed the presence of gallic acid and pyrogallol (phenolics), rutin and myricetin (flavonoids) and daidzein (isoflavonoid). The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl)-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy) and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy), acetic acid and furfural (2-furancarboxaldehyde) in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0-1.63 cm) at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe(3+)) to ferrous ion (Fe(2+)). Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.
    Matched MeSH terms: Phorbol Esters/analysis
  13. Abedi Karjiban R, Basri M, Abdul Rahman MB, Salleh AB
    Int J Mol Sci, 2012;13(8):9572-9583.
    PMID: 22949816 DOI: 10.3390/ijms13089572
    Palm oil-based esters (POEs) are unsaturated and non-ionic esters with a great potential to act as chemical penetration enhancers and drug carriers for transdermal drug nano-delivery. A ratio of palmitate ester and nonionic Tween80 with and without diclofenac acid was chosen from an experimentally determined phase diagram. Molecular dynamics simulations were performed for selected compositions over a period of 15 ns. Both micelles showed a prolate-like shape, while adding the drug produced a more compact micellar structure. Our results proposed that the drug could behave as a co-surfactant in our simulated model.
    Matched MeSH terms: Esters/chemistry*
  14. Salim N, Basri M, Rahman MB, Abdullah DK, Basri H
    Int J Nanomedicine, 2012;7:4739-47.
    PMID: 22973096 DOI: 10.2147/IJN.S34700
    During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied.
    Matched MeSH terms: Esters
  15. Mahdi ES, Noor AM, Sakeena MH, Abdullah GZ, Abdulkarim MF, Sattar MA
    Int J Nanomedicine, 2011;6:2499-512.
    PMID: 22072884 DOI: 10.2147/IJN.S22337
    BACKGROUND: Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging.

    METHODS: Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method.

    RESULTS: Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively.

    CONCLUSION: The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.

    Matched MeSH terms: Esters/chemistry
  16. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
    Matched MeSH terms: Esters
  17. Yusof YA, Azizul Hasan ZA, Abd Maurad Z
    Int J Toxicol, 2024;43(2):157-164.
    PMID: 38048784 DOI: 10.1177/10915818231217041
    Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.
    Matched MeSH terms: Esters
  18. Nurazwa Ishak, Ahmad Firdaus Lajis, Rosfarizan Mohamad, Arbakariya Ariff, Murni Halim, Helmi Wasoh
    MyJurnal
    In this paper, the syntheses of kojic acid esters via chemical and enzymatic methods are
    reviewed. The advantages and disadvantages of chemical process in term of process, safety and
    efficiency are discussed. In enzymatic process, the significant process parameters related to the
    synthesis of kojic acid esters such as the lipases, solvent, temperature and water content are
    highlighted. Possible enzymatic synthesis using solvent and solvent-free system taking into
    consideration of the difference in these systems involving cost, lipase reusability and efficiency
    is comparatively reviewed. The possible approach for large scale production using various
    enzyme reactor designs is also discussed and re-evaluated.
    Matched MeSH terms: Esters
  19. Tevan, R., Jayakumar, Saravanan, Mohd Hasbi Ab. Rahim, Maniam, Gaaty Pragas, Govindan, Natanamurugaraj
    MyJurnal
    The world is facing a problem regarding the use of petroleum fuels that has led to a search for a suitable alternative fuel source. Researchers have come up with the idea of producing biofuel to overcome this problem. In this study, microalgae were explored as a high potential feedstock to produce biofuel. In order to produce a large quantity of biofuel with low cost at a short time, the manipulation of nutrients is a factor in microalgae cultivation. In this study, Iron (II) Chloride (FeCl2) was added to the nutrients to initiate a stressful condition during growth which contributes to the produce of lipid. Isolated microalgae species were identified as Scenedesmus sp. During mass cultivation, the microalgae cultures were scaled up to 2 L of culture. Three flasks of microalgae culture were labelled with S1, S2, and S3. Flask S1 acts as a control without the addition of FeCl2, while another two flasks acted as experimental flasks. Flask S2 was supplemented with 0.5 mg FeCl2 while Flask S3 was supplemented with 1.0 mg of FeCl2. With the addition of Iron (II) Chloride, microalgae entered a stationary phase at day 9 and day 10 as compared to the control flask which enters the stationary phase at day 7. This also affects the dry weight. Flask 3 produces 0.8658 g of microalgae powder compared to Flask 1 and 2 which produced 0.4649 g and 0.5357 g respectively. Lipid analysis was done by using GCMS and GCFID. Flask 3 produced various types of fatty acids which can be used for biodiesel production compared to other cultivates. In Flask 1, docosanoic acid which is a saturated fatty acid was detected. While in Flask 2 (S2), with the addition of 0.5 mg of FeCl2, docosapentaenoic acid was produced. In the last flask which involved the addition of 1.0 mg of FeCl2, more fatty acid was detected. In GC-FID data, 6 types of fatty acids were detected. Linolein acid, linolenic acid, stearidonic acid, docosapentaenoic acid, docosahexaenoic acid and docosanoic acid were produced at different retention times. Most of the fatty acids produced are polyunsaturated fatty acid (PUFA). In transesterification, the fatty acid reacts with methanol and acid catalyst. The reaction produces fatty acid methyl ester. In Flask 1, the control flask, without the addition of FeCl2, no fatty acid methyl esters (FAME) was produced. However, in Flask 2 and 3 which were added 0.5 mg FeCl2 and 1.0 mg FeCl2, n-hexadecanoic acid methyl ester which is also known as palmitic acid was produced. Palmitic fatty acid can be used for biodiesel production.
    Matched MeSH terms: Esters
  20. Zulkurnain M, Lai OM, Tan SC, Abdul Latip R, Tan CP
    J Agric Food Chem, 2013 Apr 3;61(13):3341-9.
    PMID: 23464796 DOI: 10.1021/jf4009185
    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
    Matched MeSH terms: Esters
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links