Displaying publications 61 - 80 of 121 in total

Abstract:
Sort:
  1. Zarzour RHA, Alshawsh MA, Asif M, Al-Mansoub MA, Mohamed Z, Ahmad M, et al.
    Nutrients, 2018 Aug 09;10(8).
    PMID: 30096951 DOI: 10.3390/nu10081057
    The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague⁻Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/metabolism; Non-alcoholic Fatty Liver Disease/pathology; Non-alcoholic Fatty Liver Disease/physiopathology; Non-alcoholic Fatty Liver Disease/prevention & control*
  2. Chan WK, Ida NH, Cheah PL, Goh KL
    J Dig Dis, 2014 Oct;15(10):545-52.
    PMID: 25060399 DOI: 10.1111/1751-2980.12175
    To perform a follow-up study on non-alcoholic fatty liver disease (NAFLD) patients in our previous study using paired liver biopsy.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/diagnosis; Non-alcoholic Fatty Liver Disease/pathology*
  3. Chan WK, Tan AT, Vethakkan SR, Tah PC, Vijayananthan A, Goh KL
    Clin Res Hepatol Gastroenterol, 2014 Jun;38(3):284-91.
    PMID: 24736032 DOI: 10.1016/j.clinre.2014.02.009
    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases are both common among patients with diabetes mellitus.
    OBJECTIVE: The aim of this study is to determine if ultrasonography-diagnosed NAFLD is associated with prevalent ischemic heart disease (IHD) among patients with diabetes mellitus.
    METHODS: This is a cross-sectional study on consecutive patients seen at the Diabetic Clinic, University of Malaya Medical Centre. The medical record for each patient was reviewed for documented IHD. Patients without documented IHD but had symptoms and/or electrocardiographic changes suggestive of IHD were referred for cardiac evaluation.
    RESULTS: Data for 399 patients were analyzed. Mean age was 62.8±10.5 years with 43.1% male. NAFLD and IHD were present in 49.6 and 26.6%, respectively. The prevalence of IHD among patients with and without NAFLD was 24.7 and 28.4%, respectively (P=0.414). The prevalence of IHD was highest among the Indians (34.1%) followed by the Malays (29.2%) and the Chinese (20.1%). No association was found between NAFLD and IHD when analyzed according to ethnicity. On multivariate analysis, independent factors associated with IHD were older age, lower levels of physical activity, greater waist circumference and higher serum glycated hemoglobin level.
    CONCLUSIONS: Ultrasonography-diagnosed NAFLD was not associated with prevalent IHD among patients with diabetes mellitus in a multiracial Asian hospital clinic population.

    Study site: Diabetic clinc, University Malaya Medical Centre (UMMC)
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/epidemiology; Non-alcoholic Fatty Liver Disease/ultrasonography*
  4. Umpleby AM, Shojaee-Moradie F, Fielding B, Li X, Marino A, Alsini N, et al.
    Clin Sci (Lond), 2017 Nov 01;131(21):2561-2573.
    PMID: 28923880 DOI: 10.1042/CS20171208
    Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD (n = 11) and low liver fat 'controls' (n = 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling.There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL1-triacylglycerol (TAG) after the high (P<0.02) and low sugar (P<0.0002) diets, a lower VLDL1-TAG fractional catabolic rate after the high sugar diet (P<0.01), and a higher VLDL1-TAG production rate after the low sugar diet (P<0.01), relative to controls. An effect of the high sugar diet, was to channel hepatic TAG into a higher production of VLDL1-TAG (P<0.02) in the controls, but in contrast, a higher production of VLDL2-TAG (P<0.05) in NAFLD. These dietary effects on VLDL subclass kinetics could be explained, in part, by differences in the contribution of fatty acids from intra-hepatic stores, and de novo lipogenesis. The present study provides new evidence that liver fat accumulation leads to a differential partitioning of hepatic TAG into large and small VLDL subclasses, in response to high and low intakes of sugars.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/blood; Non-alcoholic Fatty Liver Disease/metabolism*
  5. Gao F, Huang JF, Zheng KI, Pan XY, Ma HL, Liu WY, et al.
    J Gastroenterol Hepatol, 2020 Oct;35(10):1804-1812.
    PMID: 32246876 DOI: 10.1111/jgh.15055
    BACKGROUND AND AIM: There is an immediate need for non-invasive accurate tests for diagnosing liver fibrosis in patients with non-alcoholic steatohepatitis (NASH). Previously, it has been suggested that MACK-3 (a formula that combines homeostasis model assessment-insulin resistance with serum serum aspartate aminotransferase and cytokeratin [CK]18-M30 levels) accurately identifies patients with fibrotic NASH. Our aim was to assess the performance of MACK-3 and develop a novel, non-invasive algorithm for diagnosing fibrotic NASH.

    METHODS: Six hundred and thirty-six adults with biopsy-proven non-alcoholic fatty liver disease (NAFLD) from two independent Asian cohorts were enrolled in our study. Liver stiffness measurement (LSM) was assessed by vibration-controlled transient elastography (Fibroscan). Fibrotic NASH was defined as NASH with a NAFLD activity score (NAS) ≥ 4 and F ≥ 2 fibrosis.

    RESULTS: Metabolic syndrome (MetS), platelet count and MACK-3 were independent predictors of fibrotic NASH. On the basis of their regression coefficients, we developed a novel nomogram showing a good discriminatory ability (area under receiver operating characteristic curve [AUROC]: 0.79, 95% confidence interval [CI 0.75-0.83]) and a high negative predictive value (NPV: 94.7%) to rule out fibrotic NASH. In the validation set, this nomogram had a higher AUROC (0.81, 95%CI 0.74-0.87) than that of MACK-3 (AUROC: 0.75, 95%CI 0.68-0.82; P liver biopsy in 56.9% of patients.

    CONCLUSIONS: Our novel nomogram (combining MACK-3, platelet count and MetS) shows promising utility for diagnosing fibrotic NASH. The sequential combination of this nomogram and vibration-controlled transient elastography limits indeterminate results and reduces the number of unnecessary liver biopsies.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/diagnosis*; Non-alcoholic Fatty Liver Disease/pathology
  6. Leong WL, Lai LL, Nik Mustapha NR, Vijayananthan A, Rahmat K, Mahadeva S, et al.
    J Gastroenterol Hepatol, 2020 Jan;35(1):135-141.
    PMID: 31310032 DOI: 10.1111/jgh.14782
    BACKGROUND AND AIM: Transient elastography (TE) and point shear wave elastography (pSWE) are noninvasive methods to diagnose fibrosis stage in patients with chronic liver disease. The aim of this study is to compare the accuracy of the two methods to diagnose fibrosis stage in non-alcoholic fatty liver disease (NAFLD) and to study the intra-observer and inter-observer variability when the examinations were performed by healthcare personnel of different backgrounds.

    METHODS: Consecutive NAFLD patients who underwent liver biopsy were enrolled in this study and had two sets each of pSWE and TE examinations by a nurse and a doctor on the same day of liver biopsy procedure. The medians of the four sets of pSWE and TE were used for evaluation of diagnostic accuracy using area under receiver operating characteristic curve (AUROC). Intra-observer and inter-observer variability was analyzed using intraclass correlation coefficients.

    RESULTS: Data for 100 NAFLD patients (mean age 57.1 ± 10.2 years; male 46.0%) were analyzed. The AUROC of TE for diagnosis of fibrosis stage ≥ F1, ≥ F2, ≥ F3, and F4 was 0.89, 0.83, 0.83, and 0.89, respectively. The corresponding AUROC of pSWE was 0.80, 0.72, 0.69, and 0.79, respectively. TE was significantly better than pSWE for the diagnosis of fibrosis stages ≥ F2 and ≥ F3. The intra-observer and inter-observer variability of TE and pSWE measurements by the nurse and doctor was excellent with intraclass correlation coefficient > 0.96.

    CONCLUSION: Transient elastography was significantly better than pSWE for the diagnosis of fibrosis stage ≥ F2 and ≥ F3. Both TE and pSWE had excellent intra-observer and inter-observer variability when performed by healthcare personnel of different backgrounds.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  7. Karuthan SR, Koh PS, Chinna K, Chan WK
    Med J Malaysia, 2021 03;76(2):199-204.
    PMID: 33742628
    INTRODUCTION: We aimed to compare the Barcelona Clinic Liver Cancer (BCLC) and Hong Kong Liver Cancer (HKLC) staging systems.

    MATERIALS AND METHODS: This is a retrospective study on patients with newly diagnosed hepatocellular carcinoma (HCC) at the University Malaya Medical Centre between 2011 and 2014. Survival times were analysed using the Kaplan- Meier procedure and comparison between groups was done using the log rank test.

    RESULTS: The data of 190 patients was analysed. Chronic hepatitis B was the most common aetiology for HCC (43.7%), but a large proportion was cryptogenic or non-alcoholic steatohepatitis-related (41.6%). Only 11.1% were diagnosed early (BCLC Stage 0-A) while majority were diagnosed at an intermediate stage (BCLC Stage B, 53.7%). The median survival rate was significantly different between the different groups when either of the staging systems was used (p<0.05 for all comparisons). However, the two staging systems lacked agreement (weighted kappa 0.519, 95%CI: 0.449, 0.589) with significant difference in median survival rates between BCLC Stage A and HKLC Stage 2, and between BCLC Stage C and HKLC Stage 4.

    CONCLUSION: Both staging systems were able to stratify patients according to survival, but they only had moderate agreement with significant differences observed in two groups of the staging systems.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  8. Newsome PN, Sasso M, Deeks JJ, Paredes A, Boursier J, Chan WK, et al.
    Lancet Gastroenterol Hepatol, 2020 04;5(4):362-373.
    PMID: 32027858 DOI: 10.1016/S2468-1253(19)30383-8
    BACKGROUND: The burden of non-alcoholic fatty liver disease (NAFLD) is increasing globally, and a major priority is to identify patients with non-alcoholic steatohepatitis (NASH) who are at greater risk of progression to cirrhosis, and who will be candidates for clinical trials and emerging new pharmacotherapies. We aimed to develop a score to identify patients with NASH, elevated NAFLD activity score (NAS≥4), and advanced fibrosis (stage 2 or higher [F≥2]).

    METHODS: This prospective study included a derivation cohort before validation in multiple international cohorts. The derivation cohort was a cross-sectional, multicentre study of patients aged 18 years or older, scheduled to have a liver biopsy for suspicion of NAFLD at seven tertiary care liver centres in England. This was a prespecified secondary outcome of a study for which the primary endpoints have already been reported. Liver stiffness measurement (LSM) by vibration-controlled transient elastography and controlled attenuation parameter (CAP) measured by FibroScan device were combined with aspartate aminotransferase (AST), alanine aminotransferase (ALT), or AST:ALT ratio. To identify those patients with NASH, an elevated NAS, and significant fibrosis, the best fitting multivariable logistic regression model was identified and internally validated using boot-strapping. Score calibration and discrimination performance were determined in both the derivation dataset in England, and seven independent international (France, USA, China, Malaysia, Turkey) histologically confirmed cohorts of patients with NAFLD (external validation cohorts). This study is registered with ClinicalTrials.gov, number NCT01985009.

    FINDINGS: Between March 20, 2014, and Jan 17, 2017, 350 patients with suspected NAFLD attending liver clinics in England were prospectively enrolled in the derivation cohort. The most predictive model combined LSM, CAP, and AST, and was designated FAST (FibroScan-AST). Performance was satisfactory in the derivation dataset (C-statistic 0·80, 95% CI 0·76-0·85) and was well calibrated. In external validation cohorts, calibration of the score was satisfactory and discrimination was good across the full range of validation cohorts (C-statistic range 0·74-0·95, 0·85; 95% CI 0·83-0·87 in the pooled external validation patients' cohort; n=1026). Cutoff was 0·35 for sensitivity of 0·90 or greater and 0·67 for specificity of 0·90 or greater in the derivation cohort, leading to a positive predictive value (PPV) of 0·83 (84/101) and a negative predictive value (NPV) of 0·85 (93/110). In the external validation cohorts, PPV ranged from 0·33 to 0·81 and NPV from 0·73 to 1·0.

    INTERPRETATION: The FAST score provides an efficient way to non-invasively identify patients at risk of progressive NASH for clinical trials or treatments when they become available, and thereby reduce unnecessary liver biopsy in patients unlikely to have significant disease.

    FUNDING: Echosens and UK National Institute for Health Research.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/complications; Non-alcoholic Fatty Liver Disease/epidemiology; Non-alcoholic Fatty Liver Disease/pathology*
  9. Lee YS, Kek BL, Poh LK, Saw SM, Loke KY
    J Pediatr Gastroenterol Nutr, 2008 Aug;47(2):172-8.
    PMID: 18664869 DOI: 10.1097/MPG.0b013e318162a0e5
    To identify factors associated with raised alanine transaminase, aspartate transaminase, and gamma-glutaryl transferase in severely obese children
    Matched MeSH terms: Fatty Liver/enzymology; Fatty Liver/etiology; Fatty Liver/epidemiology*
  10. Hock, Eng Khoo, Azrina Azlan, Amin Ismail, Al-Sheraji, Sadek Hassan
    MyJurnal
    Defatted dabai peel contains a high amount of anthocyanin. Anthocyanins are known to prevent several
    types of disease, including cardiovascular-related complications. This study aimed to describe the
    effects of different doses of defatted dabai peel extract by histopathological analyses on lesions in the
    liver, kidney, heart and aorta. Histopathology methods were applied to determine the protective effects
    of defatted dabai peel extracts against hypercholesterolemia-induced oxidative damages to animal
    organs. Haematoxylin and eosin staining was applied for histopathology examination for liver, kidney,
    heart and aorta. Data showed that a high dose of defatted dabai extract (3000 mg per day) applied to
    hypercholesterolemic rabbits for eight weeks had mild protective effect, especially reducing the severity
    of hepatic fibrosis and steatosis of the renal medulla. The high dose of extract supplementation also
    reduced inflammation of aorta and formation of atherosclerosis plaque in the cell wall of right ventricle
    of the heart. The high dose of defatted dabai peel extract could be a protective agent against oxidative
    stress.
    Matched MeSH terms: Fatty Liver
  11. Cartland SP, Harith HH, Genner SW, Dang L, Cogger VC, Vellozzi M, et al.
    Sci Rep, 2017 05 15;7(1):1898.
    PMID: 28507343 DOI: 10.1038/s41598-017-01721-4
    Non-alcoholic fatty liver disease (NAFLD) incorporates steatosis, non-alcoholic steato-hepatitis (NASH) and liver cirrhosis, associating with diabetes and cardiovascular disease (CVD). TNF-related apoptosis-inducing ligand (TRAIL) is protective of CVD. We aimed to determine whether TRAIL protects against insulin resistance, NAFLD and vascular injury. Twelve-week high fat diet (HFD)-fed Trail -/- mice had increased plasma cholesterol, insulin and glucose compared to wildtype. Insulin tolerance was impaired with TRAIL-deletion, with reduced p-Akt, GLUT4 expression and glucose uptake in skeletal muscle. Hepatic triglyceride content, inflammation and fibrosis were increased with TRAIL-deletion, with elevated expression of genes regulating lipogenesis and gluconeogenesis. Moreover, Trail -/- mice exhibited reduced aortic vasorelaxation, impaired insulin signaling, and >20-fold increased mRNA expression for IL-1β, IL-6, and TNF-α. In vitro, palmitate treatment of hepatocytes increased lipid accumulation, inflammation and fibrosis, with TRAIL mRNA significantly reduced. TRAIL administration inhibited palmitate-induced hepatocyte lipid uptake. Finally, patients with NASH had significantly reduced plasma TRAIL compared to control, simple steatosis or obese individuals. These findings suggest that TRAIL protects against insulin resistance, NAFLD and vascular inflammation. Increasing TRAIL levels may be an attractive therapeutic strategy, to reduce features of diabetes, as well as liver and vascular injury, so commonly observed in individuals with NAFLD.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/diagnosis; Non-alcoholic Fatty Liver Disease/etiology*; Non-alcoholic Fatty Liver Disease/metabolism*
  12. Thalha AM, Mahadeva S, Boon Tan AT, Mun KS
    JGH Open, 2018 Oct;2(5):242-245.
    PMID: 30483596 DOI: 10.1002/jgh3.12083
    A 33-year-old man was referred with hyperosmotic symptoms of 4 weeks. Clinical examination showed palpable hepatomegaly and no stigmata of liver disease. Findings were random glucose 16.6 mmol/L, HbA1c 12.4%, triglyceride 6.2 mmol/L, normal LFTs and ultrasound liver: increased echogenicity. Management consisted of dietician referral and commencement of metformin 500 mg bd, diamicron MR 60 mg od, and fenofibrate 145 mg od. He was non-compliant, complaining of "heaviness of head" after consuming oral diabetic agents, without symptoms of hypoglycemia. Treatment was switched to Kombiglyze XR (saxaglipitin 5 mg + metformin 1000 mg) and empagliflozin 25 mg od. He presented 1 week later with generalised pruritus with ALT 307 IU/L and serum GGT 808 IU/L. Following this, a percutaneous liver biopsy was performed, revealing steatohepatitis and marked intra-hepatic cholestasis. Kombiglyze XR was withheld, with resolution of LFTs to baseline. Phenotypes of liver injury are categorised according to R value, defined as ratio ALT/ULN:ALP/ULN. R value of ≥5:hepatocellular injury, ≤2:cholestatic injury, 2-5:mixed-type injury. Here, R value points toward mixed type (R = 3.203). Hepatotoxicity in patients with NASH is difficult to diagnose, based on laboratory parameters. Liver histology was useful in indicating additional changes apart from NASH, causing liver derangement. The Rousal Uclaf Causality Assessment Method is a scoring method to determine the probability of drug induced liver injury. RUCAM score for this case was 6 (probable adverse drug reaction). Hepatotoxicity from saxagliptin not been reported prior. Clinicians need to be more vigilant, particularly in patients with NASH.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  13. Wong SW, Ting YW, Chan WK
    JGH Open, 2018 Oct;2(5):235-241.
    PMID: 30483595 DOI: 10.1002/jgh3.12070
    Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer-related mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver pathology that is characterized by the excessive accumulation of fat in the liver attributable to overnutrition and is strongly associated with the metabolic syndrome. Non-alcoholic steatohepatitis is the more severe form of NAFLD that is defined histologically by the presence of lobular inflammation and hepatocyte ballooning. Non-alcoholic steatohepatitis patients have a greater tendency to develop advanced liver fibrosis, cirrhosis, and HCC. This review focuses on the epidemiology of NAFLD-related HCC and its implications. NAFLD has been estimated to contribute to 10-12% of HCC cases in Western populations and 1-6% of HCC cases in Asian populations. NAFLD-related HCC is expected to increase in Asian populations, in line with the increased prevalence of NALFD similar to that of Western populations in recent years. The increasing burden of NAFLD-related HCC over time has been demonstrated in studies from both Western and Asian populations. Certain factors such as ethnicity, obesity, and diabetes mellitus appear to have an incremental effect on the risk of developing HCC among NAFLD patients. The difficulty in identifying NAFLD patients with cirrhosis and the possibility of HCC developing in noncirrhotic NAFLD patients are challenges that need to be addressed. Further understanding of these gaps may contribute to better surveillance strategies for the early detection of HCC in NAFLD patients to reduce the mortality and improve the survival of these patients.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  14. Kamarajah SK, Khoo S, Chan WK, Sthaneshwar P, Nik Mustapha NR, Mahadeva S
    JGH Open, 2019 Oct;3(5):417-424.
    PMID: 31633048 DOI: 10.1002/jgh3.12178
    Background and Aim: To date, there are limited data on the applicability of cathepsin D for the diagnosis and monitoring of non-alcoholic steatohepatitis (NASH).

    Methods: This study included patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD) diagnosed between November 2012 and October 2015. Serum cathepsin D levels were measured using the CatD enzyme-linked immunosorbent assay (USCN Life Science, Wuhan, China) using stored samples collected on the same day of the liver biopsy procedure. The performance of cathepsin D in the diagnosis and monitoring of NASH was evaluated using receiver operating characteristic analysis.

    Results: Data for 216 liver biopsies and 34 healthy controls were analyzed. The mean cathepsin D level was not significantly different between NAFLD patients and controls; between NASH and non-NASH patients; and across the different steatosis, lobular inflammation, and hepatocyte ballooning grades. The area under receiver operating characteristic curve (AUROC) of cathepsin D for the diagnosis of NAFLD and NASH was 0.62 and 0.52, respectively. The AUROC of cathepsin D for the diagnosis of the different steatosis, lobular inflammation, and hepatocyte ballooning grades ranged from 0.51 to 0.58. Of the 216 liver biopsies, 152 were paired liver biopsies from 76 patients who had a repeat liver biopsy after 48 weeks. There was no significant change in the cathepsin D level at follow-up compared to baseline in patients who had histological improvement or worsening for steatosis, lobular inflammation, and hepatocyte ballooning grades. Cathepsin D was poor for predicting improvement or worsening of steatosis and hepatocyte ballooning, with AUROC ranging from 0.47 to 0.54. It was fair for predicting worsening (AUROC 0.73) but poor for predicting improvement (AUROC 0.54) of lobular inflammation.

    Conclusion: Cathepsin D was a poor biomarker for the diagnosis and monitoring of NASH in our cohort of Asian patients, somewhat inconsistent with previous observations in Caucasian patients. Further studies in different cohorts are needed to verify our observation.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  15. Jayaraman T, Lee YY, Chan WK, Mahadeva S
    JGH Open, 2020 Jun;4(3):332-339.
    PMID: 32514433 DOI: 10.1002/jgh3.12275
    Liver diseases form a heterogenous group of acute and chronic disorders of varying etiologies. Not only do they result in significant morbidity and mortality, but they also lead to a marked reduction in quality of life, together with a high socioeconomic burden globally. A better understanding of their global distribution is necessary to curb the massive health-care and socioeconomic burden that they entail. Notable differences and similarities have been described between common liver disease conditions occurring in Asia and the West (Europe and North America), giving rise to the need for an updated collective appraisal of this subject. In this review, the epidemiological differences of common liver conditions, specifically acute liver failure, drug-induced liver injury, acute-on-chronic liver failure, hepatocellular carcinoma, and non-alcoholic fatty liver disease, between Asia and the West are discussed.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  16. Teoh HL, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2021;23(2):43-56.
    PMID: 33639080 DOI: 10.1615/IntJMedMushrooms.2021037649
    Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Lifestyle modifications through the diet are the mainstay of treatment. Auricularia nigricans is a popular edible mushroom known to possess medicinal properties. Gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis indicated that linoleic acid ethyl ester, butyl 9,12-octadecadienoate, 9,12-octadecadienoic acid, ergosta-5,7,22-trien-3-ol, 2(3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid, and 3,30-di-0-methyl ellagic acid were present in the A. nigricans ethyl acetate (EA) fraction. The cytotoxicity assay showed that the EA fraction was noncytotoxic to HepG2 cells at concentrations < 100 μg/mL. In the antihepatic steatosis assay, 50 μg/mL of EA fraction caused a decline in absorbance to 0.20 ± 0.02 compared to palmitic acid (PA)-induced cells (0.24 ± 0.02). Furthermore, cells treated with 50 μg/mL and 25 μg/mL of EA fraction contributed an approximately 1.12-fold and 1.08-fold decrease in lipid accumulation compared to PA-induced cells. Coincubation with PA and 25 μg/mL of EA fraction decreased levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 to 140.48 ± 8.12, 91.16 ± 2.40, 184.00 ± 22.68, and 935.88 ± 39.36 pg/mL compared to PA-induced cells. The presence of the EA fraction also suppressed the stress-activated protein kinase/Jun amino-terminal kinase, p-38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription 3 signaling pathways. In conclusion, these findings suggest that the A. nigricans EA fraction demonstrates antisteatotic effects involving antioxidant capacity, hypolipidemic effects, and anti-inflammatory capacity in the PA-induced NAFLD pathological cell model.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  17. Chan TT, Chan WK, Wong GL, Chan AW, Nik Mustapha NR, Chan SL, et al.
    Am J Gastroenterol, 2020 06;115(6):867-875.
    PMID: 32149781 DOI: 10.14309/ajg.0000000000000588
    OBJECTIVES: Previous exposure to hepatitis B virus (HBV) may increase the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. We aim to study the impact of previous HBV infection on the severity and outcomes of patients with nonalcoholic fatty liver disease (NAFLD).

    METHODS: This was a multicenter study of 489 patients with biopsy-proven NAFLD and 69 patients with NAFLD-related or cryptogenic HCC. Antihepatitis B core antibody (anti-HBc) was used to detect the previous HBV infection.

    RESULTS: In the biopsy cohort, positive anti-HBc was associated with lower steatosis grade but higher fibrosis stage. 18.8% and 7.5% of patients with positive and negative anti-HBc had cirrhosis, respectively (P < 0.001). The association between anti-HBc and cirrhosis remained significant after adjusting for age and metabolic factors (adjusted odds ratio 2.232; 95% confidence interval, 1.202-4.147). At a mean follow-up of 6.2 years, patients with positive anti-HBc had a higher incidence of HCC or cirrhotic complications (6.5% vs 2.2%; P = 0.039). Among patients with NAFLD-related or cryptogenic HCC, 73.9% had positive anti-HBc. None of the patients had positive serum HBV DNA. By contrast, antihepatitis B surface antibody did not correlate with histological severity.

    DISCUSSION: Positive anti-HBc is associated with cirrhosis and possibly HCC and cirrhotic complications in patients with NAFLD. Because a significant proportion of NAFLD-related HCC may develop in noncirrhotic patients, future studies should define the role of anti-HBc in selecting noncirrhotic patients with NAFLD for HCC surveillance.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/complications; Non-alcoholic Fatty Liver Disease/epidemiology*; Non-alcoholic Fatty Liver Disease/pathology
  18. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al.
    Aliment Pharmacol Ther, 2018 Apr;47(7):989-1000.
    PMID: 29446106 DOI: 10.1111/apt.14529
    BACKGROUND: Liver fibrosis is often accompanied by steatosis, particularly in patients with non-alcoholic fatty liver disease (NAFLD), and its non-invasive characterisation is of utmost importance. Vibration-controlled transient elastography is the non-invasive method of choice; however, recent research suggests that steatosis may influence its diagnostic performance. Controlled Attenuation Parameter (CAP) added to transient elastography enables simultaneous assessment of steatosis and fibrosis.

    AIM: To determine how to use CAP in interpreting liver stiffness measurements.

    METHODS: This is a secondary analysis of data from an individual patient data meta-analysis on CAP. The main exclusion criteria for the current analysis were unknown aetiology, unreliable elastography measurement and data already used for the same research question. Aetiology-specific liver stiffness measurement cut-offs were determined and used to estimate positive and negative predictive values (PPV/NPV) with logistic regression as functions of CAP.

    RESULTS: Two thousand and fifty eight patients fulfilled the inclusion criteria (37% women, 18% NAFLD/NASH, 42% HBV, 40% HCV, 51% significant fibrosis ≥ F2). Youden optimised cut-offs were only sufficient for ruling out cirrhosis (NPV of 98%). With sensitivity and specificity-optimised cut-offs, NPV for ruling out significant fibrosis was moderate (70%) and could be improved slightly through consideration of CAP. PPV for significant fibrosis and cirrhosis were 68% and 55% respectively, despite specificity-optimised cut-offs for cirrhosis.

    CONCLUSIONS: Liver stiffness measurement values below aetiology-specific cut-offs are very useful for ruling out cirrhosis, and to a lesser extent for ruling out significant fibrosis. In the case of the latter, Controlled Attenuation Parameter can improve interpretation slightly. Even if cut-offs are very high, liver stiffness measurements are not very reliable for ruling in fibrosis or cirrhosis.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  19. Lee YY
    Malays J Med Sci, 2015 Jan-Feb;22(1):1-3.
    PMID: 25892944
    Obesity is a fast-emerging epidemic in the Asia-Pacific region, with numbers paralleling the rising global prevalence within the past 30 years. The landscape of gut diseases in Asia has been drastically changed by obesity. In addition to more non-specific abdominal symptoms, obesity is the cause of gastro-oesophageal reflux disease, various gastrointestinal cancers (colorectal cancer, hepatocellular carcinoma, oesophageal adenocarcinoma, gastric cardia adenocarcinoma, pancreatic cancer and gallbladder cancer) and non-alcoholic fatty liver disease. Abnormal cross-talk between the gut microbiome and the obese host seems to play a central role in the pathogenesis, but more studies are needed.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  20. Khoo S, Wong VW, Goh GB, Fan J, Chan WK, Seto WK, et al.
    J Gastroenterol Hepatol, 2020 Feb;35(2):320-325.
    PMID: 31336392 DOI: 10.1111/jgh.14794
    BACKGROUND AND AIM: Nonalcoholic fatty liver disease (NAFLD) patients often have dyslipidemia, and optimal treatment of dyslipidemia lowers the risk of cardiovascular disease and mortality. Our aim was to study the prescription of statin and low-density lipoprotein cholesterol treatment targets in NAFLD patients.

    METHODS: Consecutive NAFLD patients attending five clinics in Asia were included in this study. The 10-year cardiovascular disease risk was calculated based on the Framingham Heart Study, and patients were categorized as moderate, high, or very high risk for cardiovascular disease on the basis of the American Association of Clinical Endocrinologist 2017 Guidelines. The low-density lipoprotein cholesterol treatment goal for each of the risk groups was 2.6, 2.6, and 1.8 mmol/L, respectively.

    RESULTS: The data for 428 patients were analyzed (mean age 54.4 ± 11.1 years, 52.1% male). Dyslipidemia was seen in 60.5% (259/428), but only 43.2% (185/428) were on a statin. The percentage of patients who were at moderate, high, and very high risk for cardiovascular disease was 36.7% (157/428), 27.3% (117/428), and 36.0% (154/428), respectively. Among patients who were on a statin, 58.9% (109/185) did not achieve the treatment target. Among patients who were not on a statin, 74.1% (180/243) should be receiving statin therapy. The percentage of patients who were not treated to target or who should be on statin was highest among patients at very high risk for cardiovascular disease at 79.6% (78/98) or 94.6% (53/56), respectively.

    CONCLUSION: This study highlights the suboptimal treatment of dyslipidemia and calls for action to improve the treatment of dyslipidemia in NAFLD patients.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/complications*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links