Displaying publications 61 - 80 of 187 in total

Abstract:
Sort:
  1. Yap FL, Cheong SK, Ammu R, Leong CF
    Malays J Pathol, 2009 Dec;31(2):113-20.
    PMID: 20514854 MyJurnal
    In this study, we evaluated the biological properties of human mesenchymal stem cells transfected (hMSC) with a plasmid vector expressing human cytokine interleukin-12 (IL-12). Surface markers were analysed by immunophenotyping using flow cytometry. Differentiation capability was evaluated towards adipogenesis and osteogenesis. We demonstrated that successfully transfected hMSC retained their surface immunophenotypes and differentiation potential into adipocytes and osteocytes. These results indicate that hMSC may be a suitable vehicle for gene transduction.
    Matched MeSH terms: Flow Cytometry
  2. Fazlina N, Maha A, Zarina AL, Hamidah A, Zulkifli SZ, Cheong SK, et al.
    Malays J Pathol, 2008 Dec;30(2):87-93.
    PMID: 19291917
    Multidrug resistance (MDR) is believed to be responsible for poor response of patients towards chemotherapy particularly patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The best-characterized resistance mechanism is the one mediated by permeability-glycoprotein (P-gp) encoded by MDR1 gene, which is responsible for drug efflux. We studied P-gp and multidrug resistance-associated protein 1 (MRP1) expression and functional activities in 43 newly diagnosed acute leukemia cases (19 paediatric ALL cases and 24 adult AML cases). The expression and functional activities were examined using flow cytometry and MultiDrugQuant assay kit (involving calcein AM uptake and efflux). P-gp and MRP1 expression and its functional activities were observed in 68.4% of paediatric ALL. In adult AML cases, all cases expressed MRP1 and its functional activities but only 58.3% were positive for P-gp and its functional activities. We were able to show a significant correlation between the expression of the multidrug resistant protein (P-gp and MRP1) and their functional activity in adult AML and paediatric ALL samples.
    Matched MeSH terms: Flow Cytometry
  3. Ho K, Yazan LS, Ismail N, Ismail M
    Cancer Epidemiol, 2009 Aug;33(2):155-60.
    PMID: 19679064 DOI: 10.1016/j.canep.2009.06.003
    Vanillin is responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies showed that vanillin could enhance the repair of mutations and thus function as an anti-mutagen. However, its role in cancer, a disease that is closely related to mutation has not yet been fully elucidated.
    Matched MeSH terms: Flow Cytometry
  4. Tong CK, Seow HF, Ramasamy R
    Med J Malaysia, 2008 Jul;63 Suppl A:77-8.
    PMID: 19024992
    The immune modulatory properties of mesenchymal stem cell (MSC) had brought a new insight in cell-based neotherapy. However, recent works of MSC are focused exclusively on bone marrow-derived MSC. We evaluated the immunogenicity of cord blood-derived MSC (CB-MSC) on T lymphocytes. Human peripheral blood mononuclear cells (PBMC) were prepared by density gradient separation and culture with the presence or absence of CB-MSC. PBMC were collected for activation analysis by flow cytometry at 24-, 48-, and 72- hours. The results showed that, CB-MSC does not stimulate nor inhibit T lymphocyte activation.
    Matched MeSH terms: Flow Cytometry
  5. Hidayah HN, Mazzre M, Ng AM, Ruszymah BH, Shalimar A
    Med J Malaysia, 2008 Jul;63 Suppl A:39-40.
    PMID: 19024973
    Bone marrow derived Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. Human MSCs were subjected to a series of treatment with a reducing agent, retinoic acid and a combination of trophic factors. This treated MSCs differentiated into Schwann cells were characterized in vitro via flow cytometry analysis and immunocytochemically. In contrast to untreated MSCs, differentiated MSCs expressed Schwann cell markers in vitro, as we confirmed by flow cytometry analysis and immunocytochemically. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration since it is difficult to grow Schwann cells in vitro.
    Matched MeSH terms: Flow Cytometry
  6. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
    Matched MeSH terms: Flow Cytometry
  7. Hassan N, Dhaliwal JS, Mohd Ibrahim H, Osman R, HIdris SZ, Lee le J, et al.
    Malays J Pathol, 2015 Aug;37(2):83-90.
    PMID: 26277663 MyJurnal
    Soluble HLA (sHLA) are potential tumour markers released in order to counter immune surveillance. sHLA-class II is less known especially in acute lymphoblastic leukaemia (ALL). This study aimed to investigate soluble, surface and allelic expression of HLA Class II (sHLA-DR) in B-cell ALL patients and compare with soluble expression in normal individuals. A sandwich enzyme-linked immunosorbent assay (ELISA) was developed to measure soluble HLA-DRB1 in plasma. Flow cytometric analysis was performed to determine median fluorescence intensity in HLA-DR surface expression. HLA-DNA typing by polymerase chain reaction, sequence specific oligonucleotides, PCRSSO was performed to determine HLA-DRB1 type in ALL samples. Results showed sHLA-DRB1 (mean±SEM) was significantly increased (p=0.001) in plasma of ALL patients (0.260 ±0.057 μg/mL; n=30) compared to healthy controls (0.051 ± 0.007µg/mL; n=31) of Malay ethnicity. However, these levels did not correlate with percentage or median fluorescence intensity of HLA-DR expressed on leukemia blasts (CD19+CD34 ± CD45(lo)HLA-DR+) or in the normal B cell population (CD19+CD34- CD45(hi)HLA-DR+) of patients. No significant difference was observed in gender (male/female) or age (paediatric/adult). Only a trend in reduced sHLA was observed in patients carrying HLA-DR04. These results have to be validated with a larger number of samples.
    Matched MeSH terms: Flow Cytometry
  8. Lee BW, Yap HK, Chew FT, Quah TC, Prabhakaran K, Chan GS, et al.
    Cytometry, 1996 Mar 15;26(1):8-15.
    PMID: 8809475
    Flow cytometric analysis of lymphocyte subsets were evaluated in 391 healthy Asian subjects ranging in age from birth to 40 years. Lymphocyte subsets were analysed using specific monoclonal antibodies: CD20 (B cells), CD3 and CD2 (T cells), CD16 and CD56+ (NK cells), CD4/CD3+ (helper-inducer T cells), CD8/ CD3+ (suppressor/cytotoxic T cells), HLA-DR expression on CD3 and CD25 (Tac) on CD3. The total white cell count, absolute lymphocyte counts, and B cell percentages peaked in infancy and declined steadily with age. Absolute counts of each subset, which were derived from absolute lymphocyte counts, also followed this trend. Increases with age were seen in the NK, T cell (CD2, CD3), and CD8 percentages. Males tended to have higher NK and CD8 percentages than females, and, conversely, females had higher CD3 and CD4 percentages than males. Comparison of our results with studies involving Caucasian subjects indicated higher NK percentages in our Asian population and lower CD4 absolute counts in the males of our population. These results indicate the presence of age, sex, and probable racial differences in lymphocyte subset expression. Our results may serve as reference standards for the Asian population.
    Matched MeSH terms: Flow Cytometry
  9. Choong ML, Ton SH, Cheong SK
    Asian Pac J Allergy Immunol, 1996 Jun;14(1):19-24.
    PMID: 8980796
    The percentage of lymphocyte subsets from the peripheral blood of healthy adults and hepatitis B surface antigen (HBsAg) carriers were analyzed by flow cytometry. The five lymphocyte subsets studied were:- T (CD3) cells, B (CD19) cells, CD4 cells, CD8 cells, Natural Killer (CD3- CD16+/CD56+) cells (NK cells) and the CD4/CD8 ratio. The percentage (mean +/- SD) for the five lymphocyte subsets from the healthy adults were (67.5 +/- 8.5)%, (12.4 +/- 4.5)%, (35.5 +/- 7.8)%, (36.8 +/- 8.5)%, (17.9 +/- 8.1)% and 1.1 +/- 0.6, respectively. HBsAg carriers positive for HBV-DNA had a lower CD4/CD8 ratio than the healthy population (P = 0.030). The percentage of CD8 cells in HBsAg carriers increased significantly (r = 0.28; P = 0.019) with an increase in ALT levels but the values remained within normal range. The percentage of NK cells and CD4/CD8 ratio in HBsAg carriers positive for anti-HBe were higher than HBsAg carriers negative for anti-HBe (92% of which are HBeAg positive) (P = 0.045 and P = 0.035, respectively). The CD4/CD8 ratio in HBsAg carriers negative for anti-HBe (92% positive for HBeAg) was also lower than in the healthy population (P = 0.042). HBsAg carriers positive for HBV-DNA, HBeAg and raised ALT levels had a lower CD4/ CD8 ratio than did the healthy population. The lower ratio was due to an increase in the percentage of CD8 cells. This suggests an activated immune response triggered by the infection in an attempt to clear the virus. HBsAg carriers with normal ALT levels and who are negative for HBV-DNA may be in a state of tolerance.
    Matched MeSH terms: Flow Cytometry
  10. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Flow Cytometry
  11. Chan KM, Hamzah R, Rahaman AA, Jong VY, Khong HY, Rajab NF, et al.
    Food Chem Toxicol, 2012 Aug;50(8):2916-22.
    PMID: 22613213 DOI: 10.1016/j.fct.2012.04.048
    Inophyllin A (INO-A), a pyranoxanthone isolated from the roots of Calophyllum inophyllum represents a new xanthone with potential chemotherapeutic activity. In this study, the molecular mechanism of INO-A-induced cell death was investigated in Jurkat T lymphoblastic leukemia cells. Assessment of phosphatidylserine exposure confirmed apoptosis as the primary mode of cell death in INO-A-treated Jurkat cells. INO-A treatment for only 30 min resulted in a significant increase of tail moment which suggests that DNA damage is an early apoptotic signal. Further flow cytometric assessment of the superoxide anion level confirmed that INO-A induced DNA damage was mediated with a concomitant generation of reactive oxygen species (ROS). Investigation on the thiols revealed an early decrease of free thiols in 30 min after 50 μM INO-A treatment. Using tetramethylrhodamine ethyl ester, a potentiometric dye, the loss of mitochondrial membrane potential (MPP) was observed in INO-A-treated cells as early as 30 min. The INO-A-induced apoptosis progressed with the simultaneous activation of caspases-2 and -9 which then led to the processing of caspase-3. Taken together, these data demonstrate that INO-A induced early oxidative stress, DNA damage and loss of MMP which subsequently led to the activation of an intrinsic pathway of apoptosis in Jurkat cells.
    Matched MeSH terms: Flow Cytometry
  12. Nik Zainuddin NAS, Muhammad H, Nik Hassan NF, Othman NH, Zakaria Y
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S768-S776.
    PMID: 33828376 DOI: 10.4103/jpbs.JPBS_262_19
    Introduction: Cervical cancer is a leading cause of death in women. Current cancer treatment comes with side effects. Clinacanthus nutans has been known traditionally to treat cancer. This study was aimed to characterize C. nutans standardized fraction (SF1) and to investigate its anticancer mechanism against SiHa cells.

    Materials and Methods: SF1 was produced by optimized methodology for bioassay-guided fractionation. Fourier transform infrared (FTIR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) were carried out to characterize the SF1. SF1 was screened for cytotoxicity activity toward HeLa, SiHa, and normal cells (NIH) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The anticancer mechanism of SF1 was evaluated toward SiHa cells, which showed highest cytotoxicity toward SF1 treatment. The mechanism includes cell cycle progression and protein expression, which was detected using specific antibody-conjugated fluorescent dye, p53-FITC, by flow cytometry.

    Results: Major constituents of SF1 were alkaloids with amines as functional group. SF1 showed highest cytotoxic activity against SiHa (half-maximal inhibitory concentration [IC50] < 10 µg/mL) compared to HeLa cells. Cytoselectivity of SF1 was observed with no IC50 detected on normal NIH cells. On flow cytometry analysis, SF1 was able to induce apoptosis on SiHa cells by arresting cell cycle at G1/S and upregulation of p53 protein.

    Conclusion: SF1 showed anticancer activity by inducing apoptosis through arrested G1/S cell cycle checkpoint-mediated mitochondrial pathway.

    Matched MeSH terms: Flow Cytometry
  13. Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW
    J Tissue Eng Regen Med, 2019 Mar;13(3):369-384.
    PMID: 30550638 DOI: 10.1002/term.2786
    Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
    Matched MeSH terms: Flow Cytometry
  14. Lew MH, Norazmi MN, Tye GJ
    Mol Immunol, 2020 Jan;117:54-64.
    PMID: 31739193 DOI: 10.1016/j.molimm.2019.10.023
    Tuberculosis (TB) is one of the deadliest human diseases worldwide caused by mycobacterial infection in the lung. Bacillus Calmette-Guerin (BCG) vaccine protects against disseminated TB in children, but its effectiveness is still questionable due to highly variable protections in adolescence and elderly individuals. Targeting the latency M.tb antigen is a recent therapeutic approach to eradicate dormant pathogen that could possibly lead to disease activation. In this study, we aimed to potentiate immune responses elicited against 16 kDa α-crystalline (HspX) tuberculosis latency antigen by incorporation of Combined Adjuvant for Synergistic Activation of Cellular immunity (CASAC). Histidine-tagged recombinant HspX protein was initially produced in Escherichia coli and purified using Ni-NTA chromatography. To evaluate its adjuvanticity, C57BL/6 mice (n = 5) were initially primed and intradermally immunised in 2-weeks interval for 4 rounds with recombinant HspX, formulated with and without CASAC. Humoral and cell-mediated immune responses elicited against HspX antigen were evaluated using ELISA and Flow Cytometry. Our findings showed that CASAC improved humoral immunity with increased antigen-specific IgG1 and IgG2a antibody response. Stronger CD8+ and Th1-driven immunity was induced by CASAC formulation as supported by elevated level of IFN-γ, TNF-α, IL-12 and IL-17A; and with low IL-10 secretion. Interestingly, adjuvanted HspX vaccine triggered a higher percentage of effector memory T-cell population than those immunised with unadjuvanted vaccine. In conclusion, CASAC adjuvant has great potential to enhance immunogenicity elicited against HspX antigen, which could be an alternative regimen to improve the efficacy of future therapeutic vaccine against Mycobacterium tuberculosis.
    Matched MeSH terms: Flow Cytometry
  15. Yasmin AR, Yeap SK, Tan SW, Hair-Bejo M, Fakurazi S, Kaiser P, et al.
    Avian Pathol, 2015;44(6):452-62.
    PMID: 26305169 DOI: 10.1080/03079457.2015.1084997
    Infectious bursal disease is caused by infectious bursal disease virus (IBDV), an immunosuppressive virus that targets immune cells such as B cells and macrophages. However, the involvement of dendritic cells (DCs) during IBDV infection is not well understood. In this study the in vitro effects of live and inactivated very virulent IBDV (vvIBDV) UPM0081 on bone marrow-derived DCs (BM-DC) were characterized and compared with BM-DC treated with lipopolysaccharide (LPS). Morphologically, BM-DC treated with LPS and vvIBDV showed stellate shape when compared to immature BM-DC. In addition, LPS-treated and both live and inactivated vvIBDV-infected BM-DC expressed high levels of double positive CD86 and major histocompatibility complex class II antigens (>20%). vvIBDV-infected BM-DC showed significantly higher numbers of apoptotic cells compared to LPS. Replication of vvIBDV was detected in the infected BM-DC as evidenced by the increased expression of VP3 and VP4 IBDV antigens based on flow cytometry, real-time polymerase chain reaction and immunofluorescence tests. Levels of different immune-related genes such as interleukin-1β (IL-1β), CXCLi2 (IL-8), IL-18, interferon gamma (IFN-γ, IL-12α, CCR7 and Toll-like receptor-3 (TLR3) were measured after LPS and vvIBDV treatments. However, marked differences were noticed in the onset and intensity of the gene expression between these two treatment groups. LPS was far more potent than live and inactivated vvIBDV in inducing the expression of IL-1β, IL-18 and CCR7 while expression of Th1-like cytokines, IFN-γ and IL-12α were significantly increased in the live vvIBDV treatment group. Meanwhile, the expression of TLR3 was increased in live vvIBDV-infected BM-DC as compared to control. Inactivated vvIBDV-treated BM-DC failed to stimulate IFN-γ, IL-12α and TLR3 expressions. This study suggested that BM-DC may serve as another target cells during IBDV infection which require further confirmation via in vivo studies.
    Matched MeSH terms: Flow Cytometry
  16. Leong CF, Raudhawati O, Cheong SK, Sivagengei K, Noor Hamidah H
    Pathology, 2003 Oct;35(5):422-7.
    PMID: 14555387
    AIMS: Epithelial membrane antigen (EMA) or MUC1 belongs to a heterogeneous group of heavily glycosylated proteins and is expressed in most normal and epithelial neoplastic cells. EMA is also expressed in plasma cells, anaplastic large cell lymphoma (Ki-1 antigen), malignant histiocytosis and erythroleukaemia. In 1996, Cheong et al. (Hematology 1996; 1: 223) demonstrated the positive expression of EMA in monoblasts. Since there were very few useful markers for differentiating subtypes of acute myeloid leukaemia with a monocytic component from the those without, a study was conducted to evaluate the prevalence of EMA expression and its relationship with known markers for monocytic-macrophage lineage (CD11c, CD14 and intracellular CD68) in monocytes and monoblasts.

    METHODS: EMA detection was performed by flow cytometry in monocytes and monoblasts. EMA expression was compared with other known markers of monocytic-macrophage lineage (CD11c, CD14 and intracellular CD68). Samples of purified monocytes were obtained from 20 healthy volunteers. Twenty-two cases of monocytic AML (M4 and M5) were studied and controls were selected from 20 cases of acute lymphoblastic leukaemia (ALL) and 18 cases of non-monocytic AML (M0, M1, M2, M3, and M7).

    RESULTS: EMA was shown to be expressed strongly on the surface of all purified monocytes. EMA expression was observed on blast cells in 18/22 (81.8%) cases of AML M4 and M5, but not in that of non-monocytic AML or ALL. In this study EMA monoclonal antibody has demonstrated a strong association (P<0.001) with all the other known markers of monocytic-macrophage lineage in acute leukaemia subtypes. EMA had also shown 100% specificity and 81.8% sensitivity in the diagnosis of AML M4 and M5.

    CONCLUSIONS: The monoclonal antibody EMA (clone E29) is a useful marker in the classification of acute myeloid leukaemia and can be used as a supplementary analysis for the diagnosis of acute leukemia with monocytic involvement.

    Matched MeSH terms: Flow Cytometry
  17. Gazali AM, Schroderus AM, Näntö-Salonen K, Rintamäki R, Pihlajamäki J, Knip M, et al.
    Diabetologia, 2020 11;63(11):2396-2409.
    PMID: 32880687 DOI: 10.1007/s00125-020-05257-7
    AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking.

    METHODS: We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as γδ T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb+) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age.

    RESULTS: Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8-CD27- MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and β7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-γ (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb+ children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3+ T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3+ T cells, p = 0.007). No alterations in γδ T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb+ children, with the exception of an increased frequency of IL-17A+ γδ T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of γδ T cells, p = 0.002).

    CONCLUSIONS/INTERPRETATION: Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes. Graphical abstract.

    Matched MeSH terms: Flow Cytometry
  18. Balakrishnan KN, Abdullah AA, Bala JA, Jesse FFA, Abdullah CAC, Noordin MM, et al.
    Virol J, 2020 Oct 27;17(1):164.
    PMID: 33109247 DOI: 10.1186/s12985-020-01436-5
    BACKGROUND: Cytomegalovirus (CMV) is an opportunistic pathogen that causes severe complications in congenitally infected newborns and non-immunocompetent individuals. Developing an effective vaccine is a major public health priority and current drugs are fronting resistance and side effects on recipients. In the present study, with the aim of exploring new strategies to counteract CMV replication, several anti-CMV siRNAs targeting IE2 and DNA polymerase gene regions were characterized and used as in combinations for antiviral therapy.

    METHODS: The rat embryo fibroblast (REF) cells were transfected with multi siRNA before infecting with CMV strain ALL-03. Viral growth inhibition was measured by tissue culture infectious dose (TCID50), cytopathic effect (CPE) and droplet digital PCR (ddPCR) while IE2 and DNA polymerase gene knockdown was determined by real-time PCR. Ganciclovir was deployed as a control to benchmark the efficacy of antiviral activities of respective individual siRNAs.

    RESULTS: There was no significant cytotoxicity encountered for all the combinations of siRNAs on REF cells analyzed by MTT colorimetric assay (P > 0.05). Cytopathic effects (CPE) in cells infected by RCMV ALL-03 had developed significantly less and at much slower rate compared to control group. The expression of targeted genes was downregulated successfully resulted in significant reduction (P Flow cytometry analysis showed a greater percentage of viable and early apoptosis of combined siRNAs-treated cells compared to control group. Notably, the siRNAs targeting gene regions were sequenced and mutations were not encountered, thereby avoiding the formation of mutant with potential resistant viruses.

    CONCLUSIONS: In conclusion. The study demonstrated a tremendous promise of innovative approach with the deployment of combined siRNAs targeting at several genes simultaneously with the aim to control CMV replication in host cells.

    Matched MeSH terms: Flow Cytometry
  19. Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al.
    J Cell Physiol, 2021 04;236(4):2829-2839.
    PMID: 32926425 DOI: 10.1002/jcp.30047
    In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-β [TGF-β], and IL-10), and cytokine secretion levels (TGF-β and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.
    Matched MeSH terms: Flow Cytometry
  20. Ismail R, Allaudin ZN, Abdullah R, Mohd Lila MA, Nik Abd Rahman NM, Abdul Rahman SO
    BMC Cancer, 2016 07 13;16:461.
    PMID: 27411985 DOI: 10.1186/s12885-016-2530-8
    BACKGROUND: Cancer therapies that kill cancer cells without affecting normal cells is the ultimate mode of treating cancers. The VP3, an avian virus-derived protein, can specifically initiate cell death through several signal transduction pathways leading to apoptosis. In cancer, chemoresistance and cell survivability implicate the cell surface protein, CD147.

    METHODS: In this study, transfection of VP3 and silencing of CD147 genes was achieved through the treatment of tumors with pVIVO1-GFP/VP3 (VP3), psiRNA-CD147/2 (shCD147/2), and their combination of CT26 colon cancer cell-induced in mice. The effectiveness of tumor-treatment was ascertained by electrophoresis, TUNEL assay, and flow cytometry analysis. While histopathological and biochemical analysis were used as toxic side effect identification.

    RESULTS: The tumor growth delay index (TGDI) after treatment with VP3, shCD147/2, and their combination treatments increased by 1.3-, 1.2-, 2.0- and 2.3-fold respectively, over untreated control. The VP3-shCD147/2 combination treatment was more efficacious then either VP3 or shCD147/2 alone in the retardation of mouse CT26 colorectal cell tumor allograft.

    CONCLUSION: The antitumor effect of the combination treatment is the result of synergistic effects of VP3 and shCD147/2 on the tumor cells resulting in apoptosis. Thus, the study shows that combination of VP3 and shCD147/2 treatment can be developed into a potential approach for anticolorectal cancer treatment regimen.

    Matched MeSH terms: Flow Cytometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links