Displaying publications 61 - 80 of 384 in total

Abstract:
Sort:
  1. Wang R, Hu X, Lü A, Liu R, Sun J, Sung YY, et al.
    Fish Shellfish Immunol, 2019 Nov;94:510-516.
    PMID: 31541778 DOI: 10.1016/j.fsi.2019.09.039
    Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.
    Matched MeSH terms: Gene Expression Profiling/veterinary
  2. Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, et al.
    J Basic Microbiol, 2017 Feb;57(2):151-161.
    PMID: 27859397 DOI: 10.1002/jobm.201600494
    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L(-1) of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
    Matched MeSH terms: Gene Expression Profiling*
  3. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
    Matched MeSH terms: Gene Expression Profiling*
  4. Nawaratna SS, Gobert GN, Willis C, Chuah C, McManus DP, Jones MK
    Mol Biochem Parasitol, 2014 Sep;196(2):82-9.
    PMID: 25149559 DOI: 10.1016/j.molbiopara.2014.08.002
    The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.
    Matched MeSH terms: Gene Expression Profiling*
  5. Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, et al.
    Nucleic Acids Res, 2021 06 04;49(10):e58.
    PMID: 33693773 DOI: 10.1093/nar/gkab120
    We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.
    Matched MeSH terms: Gene Expression Profiling/methods*
  6. Esa E, Hashim AK, Mohamed EHM, Zakaria Z, Abu Hassan AN, Mat Yusoff Y, et al.
    Genet Test Mol Biomarkers, 2021 Mar;25(3):199-210.
    PMID: 33734890 DOI: 10.1089/gtmb.2020.0182
    Background: The association between dysregulated microRNAs (miRNAs) and acute myeloid leukemia (AML) is well known. However, our understanding of the regulatory role of miRNAs in the cytogenetically normal AML (CN-AML) subtype pathway is still poor. The current study integrated miRNA and mRNA profiles to explore novel miRNA-mRNA interactions that affect the regulatory patterns of de novo CN-AML. Methods: We utilized a multiplexed nanoString nCounter platform to profile both miRNAs and mRNAs using similar sets of patient samples (n = 24). Correlations were assessed, and an miRNA-mRNA network was constructed. The underlying biological functions of the mRNAs were predicted by gene enrichment. Finally, the interacting pairs were assessed using TargetScan and microT-CDS. We identified 637 significant negative correlations (false discovery rate <0.05). Results: Network analysis revealed a cluster of 12 miRNAs representing the majority of mRNA targets. Within the cluster, five miRNAs (miR-495-3p, miR-185-5p, let-7i-5p, miR-409-3p, and miR-127-3p) were posited to play a pivotal role in the regulation of CN-AML, as they are associated with the negative regulation of myeloid leukocyte differentiation, negative regulation of myeloid cell differentiation, and positive regulation of hematopoiesis. Conclusion: Three novel interactions in CN-AML were predicted as let-7i-5p:HOXA9, miR-495-3p:PIK3R1, and miR-495-3p:CDK6 may be responsible for regulating myeloid cell differentiation in CN-AML.
    Matched MeSH terms: Gene Expression Profiling/methods
  7. Chan MY, Efthymios M, Tan SH, Pickering JW, Troughton R, Pemberton C, et al.
    Circulation, 2020 10 13;142(15):1408-1421.
    PMID: 32885678 DOI: 10.1161/CIRCULATIONAHA.119.045158
    BACKGROUND: Heart failure (HF) is the most common long-term complication of acute myocardial infarction (MI). Understanding plasma proteins associated with post-MI HF and their gene expression may identify new candidates for biomarker and drug target discovery.

    METHODS: We used aptamer-based affinity-capture plasma proteomics to measure 1305 plasma proteins at 1 month post-MI in a New Zealand cohort (CDCS [Coronary Disease Cohort Study]) including 181 patients post-MI who were subsequently hospitalized for HF in comparison with 250 patients post-MI who remained event free over a median follow-up of 4.9 years. We then correlated plasma proteins with left ventricular ejection fraction measured at 4 months post-MI and identified proteins potentially coregulated in post-MI HF using weighted gene co-expression network analysis. A Singapore cohort (IMMACULATE [Improving Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling]) of 223 patients post-MI, of which 33 patients were hospitalized for HF (median follow-up, 2.0 years), was used for further candidate enrichment of plasma proteins by using Fisher meta-analysis, resampling-based statistical testing, and machine learning. We then cross-referenced differentially expressed proteins with their differentially expressed genes from single-cell transcriptomes of nonmyocyte cardiac cells isolated from a murine MI model, and single-cell and single-nucleus transcriptomes of cardiac myocytes from murine HF models and human patients with HF.

    RESULTS: In the CDCS cohort, 212 differentially expressed plasma proteins were significantly associated with subsequent HF events. Of these, 96 correlated with left ventricular ejection fraction measured at 4 months post-MI. Weighted gene co-expression network analysis prioritized 63 of the 212 proteins that demonstrated significantly higher correlations among patients who developed post-MI HF in comparison with event-free controls (data set 1). Cross-cohort meta-analysis of the IMMACULATE cohort identified 36 plasma proteins associated with post-MI HF (data set 2), whereas single-cell transcriptomes identified 15 gene-protein candidates (data set 3). The majority of prioritized proteins were of matricellular origin. The 6 most highly enriched proteins that were common to all 3 data sets included well-established biomarkers of post-MI HF: N-terminal B-type natriuretic peptide and troponin T, and newly emergent biomarkers, angiopoietin-2, thrombospondin-2, latent transforming growth factor-β binding protein-4, and follistatin-related protein-3, as well.

    CONCLUSIONS: Large-scale human plasma proteomics, cross-referenced to unbiased cardiac transcriptomics at single-cell resolution, prioritized protein candidates associated with post-MI HF for further mechanistic and clinical validation.

    Matched MeSH terms: Gene Expression Profiling*
  8. Mohamed Yusoff A, Tan TK, Hari R, Koepfli KP, Wee WY, Antunes A, et al.
    Sci Rep, 2016 09 13;6:28199.
    PMID: 27618997 DOI: 10.1038/srep28199
    Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins.
    Matched MeSH terms: Gene Expression Profiling/methods*
  9. Vincent-Chong VK, Salahshourifar I, Woo KM, Anwar A, Razali R, Gudimella R, et al.
    PLoS One, 2017;12(4):e0174865.
    PMID: 28384287 DOI: 10.1371/journal.pone.0174865
    BACKGROUND: Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy.

    OBJECTIVES: The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes.

    MATERIALS AND METHODS: Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software.

    RESULTS: Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC.

    CONCLUSION: Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles in tumourigenesis pathways.

    Matched MeSH terms: Gene Expression Profiling*
  10. Tan GW, Tan LP
    Methods Mol Biol, 2017;1580:7-19.
    PMID: 28439823 DOI: 10.1007/978-1-4939-6866-4_2
    Reverse transcription followed by real-time or quantitative polymerase chain reaction (RT-qPCR) is the gold standard for validation of results from transcriptomic profiling studies such as microarray and RNA sequencing. The current need for most studies, especially biomarker studies, is to evaluate the expression levels or fold changes of many transcripts in a large number of samples. With conventional low to medium throughput qPCR platforms, many qPCR plates would have to be run and a significant amount of RNA input per sample will be required to complete the experiments. This is particularly challenging when the size of study material (small biopsy, laser capture microdissected cells, biofluid, etc.), time, and resources are limited. A sensitive and high-throughput qPCR platform is therefore optimal for the evaluation of many transcripts in a large number of samples because the time needed to complete the entire experiment is shortened and the usage of lab consumables as well as RNA input per sample are low. Here, the methods of high-throughput RT-qPCR for the analysis of circulating microRNAs are described. Two distinctive qPCR chemistries (probe-based and intercalating dye-based) can be applied using the methods described here.
    Matched MeSH terms: Gene Expression Profiling/methods
  11. Rosli R, Amiruddin N, Ab Halim MA, Chan PL, Chan KL, Azizi N, et al.
    PLoS One, 2018;13(4):e0194792.
    PMID: 29672525 DOI: 10.1371/journal.pone.0194792
    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
    Matched MeSH terms: Gene Expression Profiling*
  12. Mirsafian H, Ripen AM, Leong WM, Manaharan T, Mohamad SB, Merican AF
    Genomics, 2017 Oct;109(5-6):463-470.
    PMID: 28733102 DOI: 10.1016/j.ygeno.2017.07.003
    Differential gene and transcript expression pattern of human primary monocytes from healthy young subjects were profiled under different sequencing depths (50M, 100M, and 200M reads). The raw data consisted of 1.3 billion reads generated from RNA sequencing (RNA-Seq) experiments. A total of 17,657 genes and 75,392 transcripts were obtained at sequencing depth of 200M. Total splice junction reads showed an even more significant increase. Comparative analysis of the expression patterns of immune-related genes revealed a total of 217 differentially expressed (DE) protein-coding genes and 50 DE novel transcripts, in which 40 DE protein-coding genes were related to the immune system. At higher sequencing depth, more genes, known and novel transcripts were identified and larger proportion of reads were allowed to map across splice junctions. The results also showed that increase in sequencing depth has no effect on the sequence alignment.
    Matched MeSH terms: Gene Expression Profiling/methods*
  13. Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, et al.
    BMC Genomics, 2017 06 21;18(1):470.
    PMID: 28637447 DOI: 10.1186/s12864-017-3855-7
    BACKGROUND: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations.

    RESULTS: A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms.

    CONCLUSIONS: Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

    Matched MeSH terms: Gene Expression Profiling*
  14. Vikashini B, Shanthi A, Ghosh Dasgupta M
    Gene, 2018 Nov 15;676:37-46.
    PMID: 30201104 DOI: 10.1016/j.gene.2018.07.012
    Casuarina equisetifolia L. is an important multi-purpose, fast growing and widely planted tree species native to tropical and subtropical coastlines of Australia, Southeast Asia, Malaysia, Melanesia, Polynesia and New Caledonia. It is a nitrogen-fixing tree mainly used for charcoal making, construction poles, landscaping, timber, pulp, firewood, windbreaks, shelterbelts, soil erosion and sand dune stabilization. Casuarina wood is presently used for paper and pulp production. Raw material with reduced lignin is highly preferred to increase the pulp yield. Hence, understanding the molecular regulation of wood formation in this tree species is vital for selecting industrially suitable phenotypes for breeding programs. The lignin biosynthetic pathway has been extensively studied in tree species like Eucalypts, poplars, pines, Picea, Betula and Acacia sp. However, studies on wood formation at molecular level is presently lacking in casuarinas. Hence, in the present study, the transcriptome of the developing secondary tissues of 15 years old Casuarina equiseitfolia subsp. equisetifolia was sequenced, de novo assembled, annotated and mapped to functional pathways. Transcriptome sequencing generated a total of 26,985 transcripts mapped to 31 pathways. Mining of the annotated data identified nine genes involved in lignin biosynthesis pathway and relative expression of the transcripts in four tissues including scale-like leaves, needle-like brachlets, wood and root were documented. The expression of CeCCR1 and CeF5H were found to be significantly high in wood tissues, while maximum expression of CeHCT was documented in stem. Additionally, CeTUBA and CeH2A were identified as the most stable reference transcript for normalization of qRT-PCR data in C. equisetifolia. The present study is the first wood genomic resource in C. equisetifolia, which will be valuable for functional genomics research in this genus.
    Matched MeSH terms: Gene Expression Profiling/methods
  15. Ng WL, Marinov GK, Chin YM, Lim YY, Ea CK
    Sci Rep, 2017 09 25;7(1):12227.
    PMID: 28947785 DOI: 10.1038/s41598-017-12550-w
    Circular RNAs (circRNAs) have recently emerged as a large class of novel non-coding RNA species. However, the detailed functional significance of the vast majority of them remains to be elucidated. Most functional characterization studies targeting circRNAs have been limited to resting cells, leaving their role in dynamic cellular responses to stimuli largely unexplored. In this study, we focus on the LPS-induced cytoplasmic circRNA, mcircRasGEF1B, and combine targeted mcircRasGEF1B depletion with high-throughput transcriptomic analysis to gain insight into its function during the cellular response to LPS stimulation. We show that knockdown of mcircRasGEF1B results in altered expression of a wide array of genes. Pathway analysis revealed an overall enrichment of genes involved in cell cycle progression, mitotic division, active metabolism, and of particular interest, NF-κB, LPS signaling pathways, and macrophage activation. These findings expand the set of functionally characterized circRNAs and support the regulatory role of mcircRasGEF1B in immune response during macrophage activation and protection against microbial infections.
    Matched MeSH terms: Gene Expression Profiling*
  16. Wang X, Wei Y, Jiang S, Ye J, Chen Y, Xu F, et al.
    Food Res Int, 2024 Jun;186:114331.
    PMID: 38729716 DOI: 10.1016/j.foodres.2024.114331
    Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.
    Matched MeSH terms: Gene Expression Profiling*
  17. Ng GYL, Tan SC, Ong CS
    PLoS One, 2023;18(10):e0292961.
    PMID: 37856458 DOI: 10.1371/journal.pone.0292961
    Cell type identification is one of the fundamental tasks in single-cell RNA sequencing (scRNA-seq) studies. It is a key step to facilitate downstream interpretations such as differential expression, trajectory inference, etc. scRNA-seq data contains technical variations that could affect the interpretation of the cell types. Therefore, gene selection, also known as feature selection in data science, plays an important role in selecting informative genes for scRNA-seq cell type identification. Generally speaking, feature selection methods are categorized into filter-, wrapper-, and embedded-based approaches. From the existing literature, methods from filter- and embedded-based approaches are widely applied in scRNA-seq gene selection tasks. The wrapper-based method that gives promising results in other fields has yet been extensively utilized for selecting gene features from scRNA-seq data; in addition, most of the existing wrapper methods used in this field are clustering instead of classification-based. With a large number of annotated data available today, this study applied a classification-based approach as an alternative to the clustering-based wrapper method. In our work, a quantum-inspired differential evolution (QDE) wrapped with a classification method was introduced to select a subset of genes from twelve well-known scRNA-seq transcriptomic datasets to identify cell types. In particular, the QDE was combined with different machine-learning (ML) classifiers namely logistic regression, decision tree, support vector machine (SVM) with linear and radial basis function kernels, as well as extreme learning machine. The linear SVM wrapped with QDE, namely QDE-SVM, was chosen by referring to the feature selection results from the experiment. QDE-SVM showed a superior cell type classification performance among QDE wrapping with other ML classifiers as well as the recent wrapper methods (i.e., FSCAM, SSD-LAHC, MA-HS, and BSF). QDE-SVM achieved an average accuracy of 0.9559, while the other wrapper methods achieved average accuracies in the range of 0.8292 to 0.8872.
    Matched MeSH terms: Gene Expression Profiling/methods
  18. Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC
    BMC Genom Data, 2021 02 05;22(1):6.
    PMID: 33568046 DOI: 10.1186/s12863-021-00962-7
    BACKGROUND: Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown.

    RESULTS: Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes.

    CONCLUSIONS: Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.

    Matched MeSH terms: Gene Expression Profiling*
  19. Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, et al.
    Sci Data, 2014;1:140023.
    PMID: 25977780 DOI: 10.1038/sdata.2014.23
    A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2-261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found.
    Matched MeSH terms: Gene Expression Profiling/methods
  20. Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, et al.
    Physiol Genomics, 2018 05 01;50(5):393-405.
    PMID: 29570432 DOI: 10.1152/physiolgenomics.00016.2018
    The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
    Matched MeSH terms: Gene Expression Profiling/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links