Displaying publications 61 - 80 of 731 in total

Abstract:
Sort:
  1. Azman A, Ng KK, Ng CH, Lee CT, Tnah LH, Zakaria NF, et al.
    Sci Rep, 2020 11 05;10(1):19112.
    PMID: 33154411 DOI: 10.1038/s41598-020-76092-4
    Worldwide, many mangrove species are experiencing significant population declines, including Rhizophora apiculata, which is one of the most widespread and economically important species in tropical Asia. In Malaysia, there has been an alarming decline in R. apiculata populations driven primarily by anthropogenic activities. However, the lack of genetic and demographic information on this species has hampered local efforts to conserve it. To address these gaps, we generated novel genetic information for R. apiculata, based on 1,120 samples collected from 39 natural populations in Peninsular Malaysia. We investigated its genetic diversity and genetic structure with 19 transcriptome and three nuclear microsatellite markers. Our analyses revealed a low genetic diversity (mean He: 0.352) with significant genetic differentiation (FST: 0.315) among populations of R. apiculata. Approximately two-third of the populations showed significant excess of homozygotes, indicating persistent inbreeding which might be due to the decrease in population size or fragmentation. From the cluster analyses, the populations investigated were divided into two distinct clusters, comprising the west and east coasts of Peninsular Malaysia. The western cluster was further divided into two sub-clusters with one of the sub-clusters showing strong admixture pattern that harbours high levels of genetic diversity, thus deserving high priority for conservation.
    Matched MeSH terms: Genetic Variation*
  2. Chong YM, Sam IC, Chong J, Kahar Bador M, Ponnampalavanar S, Syed Omar SF, et al.
    PLoS Negl Trop Dis, 2020 11;14(11):e0008744.
    PMID: 33253226 DOI: 10.1371/journal.pntd.0008744
    Malaysia had 10,219 confirmed cases of COVID-19 as of September 20, 2020. About 33% were associated with a Tablighi Jamaat religious mass gathering held in Kuala Lumpur between February 27 and March 3, 2020, which drove community transmission during Malaysia's second wave. We analysed genome sequences of SARS-CoV-2 from Malaysia to better understand the molecular epidemiology and spread. We obtained 58 SARS-CoV-2 whole genome sequences from patients in Kuala Lumpur and performed phylogenetic analyses on these and a further 57 Malaysian sequences available in the GISAID database. Nine different SARS-CoV-2 lineages (A, B, B.1, B.1.1, B.1.1.1, B.1.36, B.2, B.3 and B.6) were detected in Malaysia. The B.6 lineage was first reported a week after the Tablighi mass gathering and became predominant (65.2%) despite being relatively rare (1.4%) globally. Direct epidemiological links between lineage B.6 viruses and the mass gathering were identified. Increases in reported total cases, Tablighi-associated cases, and community-acquired B.6 lineage strains were temporally linked. Non-B.6 lineages were mainly travel-associated and showed limited onward transmission. There were also temporally correlated increases in B.6 sequences in other Southeast Asian countries, India and Australia, linked to participants returning from this event. Over 95% of global B.6 sequences originated from Asia Pacific. We also report a nsp3-C6310A substitution found in 47.3% of global B.6 sequences which was associated with reduced sensitivity using a commercial diagnostic real-time PCR assay. Lineage B.6 became the predominant cause of community transmission in Malaysia after likely introduction during a religious mass gathering. This event also contributed to spikes of lineage B.6 in other countries in the Asia-Pacific. Mass gatherings can be significant causes of local and global spread of COVID-19. Shared genomic surveillance can be used to identify SARS-CoV-2 transmission chains to aid prevention and control, and to monitor diagnostic molecular assays. Clinical Trial Registration: COVID-19 paper.
    Matched MeSH terms: Genetic Variation
  3. Testamenti VA, Surya M, Saepuloh U, Iskandriati D, Tandang MV, Kristina L, et al.
    Vet World, 2020 Nov;13(11):2459-2468.
    PMID: 33363342 DOI: 10.14202/vetworld.2020.2459-2468
    Background and Aim: Melioidosis is a potentially fatal disease affecting humans and a wide range of animal species; it is often underdiagnosed and underreported in veterinary medicine in Indonesia. This study aimed to characterize morphological and molecular features of Burkholderia pseudomallei, the causative agent of melioidosis which caused the death of a Bornean orangutan.

    Materials and Methods: Pulmonary abscess samples were cultured on several types of media, including Ashdown agar, Ashdown broth, and MacConkey agar. Type three secretion system orf 2 real-time polymerase chain reaction (PCR) and latex agglutination tests were performed to identify the bacteria. Morphological characteristics were compared to all previously published morphotypes. Subsequently, the bacteria were characterized by multilocus sequence typing (MLST) and Yersinia-like flagellum/Burkholderia thailandensis-like flagellum and chemotaxis PCR. The results of the genotyping were afterward compared to all genotypes from Southeast Asia.

    Results: Multiple morphotypes of B. pseudomallei were perceived during the growth on Ashdown agar. Furthermore, it was identified by MLST that the Type I and Type II morphotypes observed in this study were clones of a single ST, ST54, which is predominantly found in humans and the environment in Malaysia and Thailand, although a very limited number of reports was published in association with animals. Moreover, the E-BURST analysis showed that the ST is grouped together with isolates from Southeast Asian countries, including Malaysia, Thailand, Singapore, and Cambodia. ST54 was predicted to be the founding genotype of several STs from those regions.

    Conclusion: B. pseudomallei ST54 that caused the death of a Bornean orangutan has a distant genetic relationship with other STs which were previously reported in Indonesia, implying a vast genetic diversity in Indonesia that has not been discovered yet.

    Matched MeSH terms: Genetic Variation
  4. Shi J, Sun J, Hu N, Hu Y
    Infect Genet Evol, 2020 11;85:104442.
    PMID: 32622923 DOI: 10.1016/j.meegid.2020.104442
    Little is known about the genetic features of Nipah virus (NiV) associated with virulence and transmission. Herein, phylogenetic and genetic analyses for all available NiV strains revealed sequence variations between the two genetic lineages of NiV with pathogenic differences, as well as among different strains within Bangladesh lineage. A total of 143 conserved amino acid differences, distributed among viral nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F) and glycoprotein (G), were revealed. Structural modeling revealed one key substitution (S3554N) in the viral G protein that might mediate a 12-amino-acid structural change from a loop into a β sheet. Multiple key amino acids substitutions in viral G protein were observed, which may alter viral fitness and transmissibility from bats to humans.
    Matched MeSH terms: Genetic Variation*
  5. Shabani NRM, Mokhtar M, Leow CH, Lean QY, Chuah C, Singh KKB, et al.
    Infect Genet Evol, 2020 11;85:104532.
    PMID: 32911076 DOI: 10.1016/j.meegid.2020.104532
    Shigella is an intracellular bacterial pathogen that causes bacterial dysentery called shigellosis. The assessment of pro- and anti-inflammatory mediators produced by immune cells against this bacteria are vital in identifying the effectiveness of the immune reaction in protecting the host. In Malaysia, Shigella is ranked as the third most common bacteria causing diarrheal disease among children below 5 years old. In the present study, we aim to examine the differential cytokine gene expressions of macrophages in response to two types of clinical strains of Shigella flexneri 2a (S. flexneri 2a) isolated from patients admitted in Hospital Universiti Sains Malaysia, Kelantan, Malaysia. THP-1-derived macrophages, as the model of human macrophages, were infected separately with S. flexneri 2a mild (SH062) and virulence (SH057) strains for 6, 12, and 24 h, respectively. The gene expression level of inflammatory mediators was identified using real-time quantitative polymerase chain reaction (RT-qPCR). The production of nitric oxide (NO) by the macrophages was measured by using a commercialized NO assay kit. The ability of macrophages to kill the intracellular bacteria was assessed by intracellular killing assay. Induction of tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, inducible NO synthase (iNOS), and NO, confirmed the pro-inflammatory reaction of the THP-1-derived macrophages in response to S. flexneri 2a, especially against the SH507 strain. The SH057 also induced a marked increase in the expression levels of the anti-inflammatory cytokine mRNAs at 12 h and 24 h post-infection. In the intracellular killing assay, both strains showed less viable, indicating the generation of pro-inflammatory cytokines in the presence of iNOS and NO was crucial in the stimulation of macrophages for the host defense against shigellosis. Transcription analysis of THP-1-derived macrophages in this study identifies differentially expressed cytokine genes that correlated with the virulence factor of S. flexneri 2a.
    Matched MeSH terms: Genetic Variation
  6. Chong ETJ, Neoh JWF, Lau TY, Lim YA, Chai HC, Chua KH, et al.
    Malar J, 2020 Oct 22;19(1):377.
    PMID: 33092594 DOI: 10.1186/s12936-020-03451-x
    BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia.

    METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3.

    RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp.

    CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.

    Matched MeSH terms: Genetic Variation*
  7. Su YC, Su SH, Li HY, Wang HY, Lee SC
    Sci Rep, 2020 10 08;10(1):16829.
    PMID: 33033371 DOI: 10.1038/s41598-020-74025-9
    Many fisheries management and conservation plans are based on the genetic structure of organisms in pelagic ecosystems; however, these structures tend to vary over time, particularly in cyclic ocean currents. We performed genetic analyses on the populations of the pelagic fish, Megalaspis cordyla (Osteichthyes: Carangidae) in the area surrounding Taiwan during 2000-2001. Genotyping was performed on M. cordyla collected seasonally around Taiwan as well as specimens collected from Singapore (Malacca strait) and Indonesia (Banda Sea). Gonadosomatic indices (GSI) revealed that M. cordyla does not spawn near Taiwan. Data related to the mitochondrial control region revealed that the samples from Singapore and Indonesia represented two distinct genetic cohorts. Genotyping revealed that during the summer (June-August 2000), the Indonesian variant was dominant in eastern Taiwan (presumably following the Kuroshio Current) and in the Penghu region (following the Kuroshio Branch Current). During the same period, the Singapore genotype was dominant along the western coast of Taiwan (presumably following the South China Sea Current); however, the number dropped during the winter (December-February 2001) under the effects of the China Coast Current. Divergence time estimates indicate that the two genetic cohorts split during the last glacial maximum. Despite the fact that these results are based on sampling from a single year, they demonstrate the importance of seasonal sampling in unravelling the genetic diversity in pelagic ecosystems.
    Matched MeSH terms: Genetic Variation*
  8. Ab Razak S, Mad Radzuan S, Mohamed N, Nor Azman NHE, Abd Majid AM, Ismail SN, et al.
    Heliyon, 2020 Sep;6(9):e05077.
    PMID: 33024864 DOI: 10.1016/j.heliyon.2020.e05077
    The trend of microsatellite marker discovery and development revolved as a result of the advancement of next generation sequencing (NGS) technology as it has developed numerous microsatellites within a short period of time at a low cost. This study generated microsatellite markers using RAD sequencing technologies for the understudied Nephelium lappaceum. A total of 1403 microsatellite markers were successfully designed, which consisted of 853 di-, 525 tri-, 17 tetra-, 5 penta-, and 3 hexanucleotide microsatellite markers. Subsequently, selection of 39 microsatellites was made for the evaluation of genetic diversity of the selected 22 rambutan varieties. Twelve microsatellites, which exhibited high call rates across the samples, were used to assess the diversity of the aforementioned rambutan varieties. The analysis of 12 microsatellites revealed the presence of 72 alleles and six alleles per locus in average. Furthermore, the polymorphic information content (PIC) value ranged from 0.326 (NlaSSR20) to 0.832 (NlaSSR32), which included an average of 0.629 per locus, while the generated Neighbour Joining dendrogram showed two major clusters. The pairwise genetic distance of shared alleles exhibited a range of values from 0.046 (R134↔R170) to 0.818 (R5↔R170), which suggested highest dissimilarity detected between R5 and R170. Notably, these research findings would useful for varietal identification, proper management and conservation of the genetic resources, and exploitation and utilization in future breeding programs.
    Matched MeSH terms: Genetic Variation
  9. Lau TTV, Tan JMA, Puthucheary SD, Puah SM, Chua KH
    Braz J Microbiol, 2020 Sep;51(3):909-918.
    PMID: 32067209 DOI: 10.1007/s42770-020-00239-8
    Aeromonas dhakensis is an emergent human pathogen with medical importance. This study was aimed to determine the sequence types (STs), genetic diversity, and phylogenetic relationships of different clinical sources of 47 A. dhakensis from Malaysia using multilocus sequence typing (MLST), goeBURST, and phylogenetic analyses. The analysis of a concatenated six-gene tree with a nucleotide length of 2994 bp based on six housekeeping genes (gyrB, groL, gltA, metG, ppsA, and recA) and independent analyses of single gene fragments was performed. MLST was able to group 47 A. dhakensis from our collection into 36 STs in which 34 STs are novel STs. The most abundant ST521 consisted of five strains from peritoneal fluid and two strains from stools. Comparison of 62 global A. dhakensis was carried out via goeBURST; 94.4% (34/36) of the identified STs are novel and unique in Malaysia. Two STs (111 and 541) were grouped into clonal complexes among our strains and 32 STs occurred as singletons. Single-gene phylogenetic trees showed varying topologies; groL and rpoD grouped all A. dhakensis into a tight-cluster with bootstrap values of 100% and 99%, respectively. A poor phylogenetic resolution encountered in single-gene analyses was buffered by the multilocus phylogenetic tree that offered high discriminatory power (bootstrap value = 100%) in resolving all A. dhakensis from A. hydrophila and delineating the relationship among other taxa. Genetic diversity analysis showed groL as the most conserved gene and ppsA as the most variable gene. This study revealed novel STs and high genetic diversity among clinical A. dhakensis from Malaysia.
    Matched MeSH terms: Genetic Variation
  10. Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL
    Infect Genet Evol, 2020 09;83:104347.
    PMID: 32360538 DOI: 10.1016/j.meegid.2020.104347
    Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp disease of economic importance which causes mass mortality of cultivated penaeid shrimps in Southeast Asian countries, Mexico and South America. This disease was originally caused by Vibrio parahaemolyticus (VPAHPND) which is reported to harbour a transferable plasmid carrying the virulent PirAB-like toxin genes (pirABvp). However, little is known about the pathogenicity of VPAHPND. To extend our understanding, comparative genomic analyses was performed in this study to identify the genetic differences and to understand the phylogenetic relationship of VPAHPND strains. Seven Vibrio parahaemolyticus strains (five VPAHPND strains and two non-VPAHPND strains) were sequenced and 31 draft genomes of V. parahaemolyticus were retrieved from NCBI database and incorporated into the genomic comparison to elucidate their genomic diversity. The study showed that the genome sizes of the VPAHPND strains were approximately 5 Mbp. Ten sequence types (STs) were identified among the VPAHPND strains using in silico-Multilocus Sequence Typing analysis (MLST) and ST 970 was the predominant ST. Phylogenetic analysis based on MLST and single nucleotide polymorphisms (SNP) showed that the VPAHPND strains were genetically diverse. Based on the comparative genomic analysis, several functional proteins were identified from diiferent categories associated with virulence-related proteins, secretory proteins, conserved domain proteins, transporter proteins, and phage proteins. The CRISPR analysis showed that VPAHPND strains contained less number of CRISPRs elements than non-VPAHPND strains while six prophages regions were identified in the genomes, suggested the lack of CRISPR might promote prophage insertion. The genomic information in this study provide improved understanding of the virulence of these VPAHPND strains.
    Matched MeSH terms: Genetic Variation
  11. Albujja MH, Messaudi SA, Vasudevan R, Al Ghamdi S, Chong PP, Ghani KA, et al.
    Asian Pac J Cancer Prev, 2020 08 01;21(8):2271-2280.
    PMID: 32856855 DOI: 10.31557/APJCP.2020.21.8.2271
    BACKGROUND: The X-chromosome has been suggested to play a role in prostate cancer (PrCa) since epidemiological studies have provided evidence for an X-linked mode of inheritance for PrCa based on the higher relative risk among men who report an affected brother(s) as compared to those reporting an affected father. The aim of this study was to examine the potential association between the forensic STR markers located at four regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28 and the risk of BPH and PrCa to confirm the impact of ChrX in the PrCa incidence. This may be helpful in the incorporation of STRs genetic variation in the early detection of men population at risk of developing PrCa.

    METHODS: DNA samples from 92 patients and 156 healthy controls collected from two medical centers in Riyadh, Saudi Arabia were analyzed for four regions located at X-chromosome using the Investigator® Argus X-12 QS Kit.

    RESULTS: The results demonstrated that microvariant alleles of (DXS7132, DXS10146, HPRTB, DXS10134, and DXS10135) are overrepresented in the BPH group (p < 0.00001). Allele 28 of DXS10135 and allele 15 of DXS7423 could have a protective effect, OR 0.229 (95%CI, 0.066-0.79); and OR 0.439 (95%CI, 0.208-0.925). On the other hand, patients carrying allele 23 of DXS10079 and allele 26 of DXS10148 presented an increased risk to PrCa OR 4.714 (95%CI, 3.604-6.166).

    CONCLUSION: The results are in concordance with the involvement of the X chromosome in PrCa and BPH development. STR allele studies may add further information from the definition of a genetic profile of PrCa resistance or susceptibility. As TBL1, AR, LDOC1, and RPL10 genes are located at regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28, respectively, these genes could play an essential role in PrCa or BPH.

    Matched MeSH terms: Genetic Variation
  12. Yap PSX, Tan TS, Chan YF, Tee KK, Kamarulzaman A, Teh CSJ
    J Microbiol Biotechnol, 2020 Jul 28;30(7):962-966.
    PMID: 32627759 DOI: 10.4014/jmb.2006.06009
    Monitoring the mutation dynamics of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in understanding its infectivity, virulence and pathogenicity for development of a vaccine. In an "age of mobility," the pandemic highlights the importance and vulnerability of regionalization and labor market interdependence in Southeast Asia. We intend to characterize the genetic variability of viral populations within the region to provide preliminary information for regional surveillance in the future. By analyzing 142 complete genomes from South East Asian (SEA) countries, we identified three central variants distinguished by nucleotide and amino acid changes.
    Matched MeSH terms: Genetic Variation
  13. Xiu L, Binder RA, Alarja NA, Kochek K, Coleman KK, Than ST, et al.
    J Clin Virol, 2020 07;128:104391.
    PMID: 32403008 DOI: 10.1016/j.jcv.2020.104391
    BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats.

    OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.

    STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.

    CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.

    Matched MeSH terms: Genetic Variation
  14. Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008202.
    PMID: 32645098 DOI: 10.1371/journal.pntd.0008202
    Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
    Matched MeSH terms: Genetic Variation*
  15. Redjeki ES, Ho WK, Shah N, Molosiwa OO, Ardiarini NR, Kuswanto, et al.
    Genome, 2020 Jun;63(6):319-327.
    PMID: 32097026 DOI: 10.1139/gen-2019-0137
    A total of 170 bambara groundnut (Vigna subterranea) accessions were evaluated using both simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers generated using genotyping-by-sequencing (GbS), of which 56 accessions were collected from West and East Java. Principal coordinate analysis (PCoA), population structure, and cluster analysis suggest that the East Java accessions could be a result of the introduction of selected West Java accessions. In addition, the current Indonesian accessions were likely introduced from Southern Africa, which would have produced a very marked founding effect such that these accessions present only a fraction of the genetic variability that exists within this species.
    Matched MeSH terms: Genetic Variation/genetics*
  16. Eamsobhana P, Yong HS, Roongruangchai K, Tungtrongchitr A, Wanachiwanawin D
    Trop Biomed, 2020 Jun 01;37(2):536-541.
    PMID: 33612820
    Two female and one male adult hookworms were recovered from a female patient in Thailand. Based on gross and microscopic morphology, the three hookworms are members of Necator americanus. Phylogenetic reconstruction based on partial NADH dehydrogenase subunit 1 (nad1) mitochondrial gene sequences shows that these hookworms belong to the same genetic lineage as N. americanus adult worm from Zhejiang, China. The male and female hookworms were genetically distinct, belonging to two different nad1-haplotypes. This is the first report targeting the nad1 gene on the identification and genetic characterization of the human hookworms originated from infected patient. The nad1 gene marker is useful for species and higher taxa differentiation of hookworms.
    Matched MeSH terms: Genetic Variation*
  17. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 May 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
    Matched MeSH terms: Genetic Variation
  18. Mokhtar AS, Ling Lau Y, Wilson JJ, Abdul-Aziz NM
    J Med Entomol, 2020 05 04;57(3):915-926.
    PMID: 31828310 DOI: 10.1093/jme/tjz234
    Pediculosis capitis caused by Pediculus humanus capitis (De Geer) is endemic all over the world, and children are mostly affected, particularly those living in overcrowded institutions. Several studies have shown that P. h. capitis carried human pathogenic bacteria, suggesting the potential role of head lice in the transmission of pathogens to humans. In this study, we determined the genetic diversity of head lice collected from welfare homes sheltering underprivileged children by using DNA barcoding and demonstrated the presence of Acinetobacter spp., Serratia marcescens, and Staphylococcus aureus in head lice, which have never been investigated before in Malaysia. Cox1 DNA barcoding identified the head lice, P. h. capitis collected from welfare homes across two geographical areas of Peninsular Malaysia as belonging to clades A, B, and D. Acinetobacter bacteria: Acinetobacter guillouiae, Acinetobacter junii, Acinetobacter baumannii, and Acinetobacter nosocomialis were detected in head lice belonging to clades A and also D. In addition, DNA from S. marcescens and S. aureus were also detected in both clades A and D. To our knowledge, this is the first report on the genetic diversity of head lice in Malaysia through DNA barcoding, as well as the first to provide molecular evidence on the type of bacteria occurring in head lice in Malaysia. It is anticipated that the DNA barcoding technique used in this study will be able to provide rapid and accurate identification of arthropods, in particular, medically important ectoparasites.
    Matched MeSH terms: Genetic Variation*
  19. Pavitra SP, Ya'cob Z, Tan TK, Lim YAL, Low VL
    Acta Trop, 2020 May;205:105415.
    PMID: 32088275 DOI: 10.1016/j.actatropica.2020.105415
    The population genetic structures of S. vanluni, S. cheongi and S. jeffreyi were determined from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) across different states in Peninsular Malaysia. High levels of genetic diversity and genetic differentiation were observed among three species. All three species revealed an intermediate level of gene flow among the populations. Negative values of Fu's Fs and low values of Raggedness index supported the hypothesis of population expansion in S. vanluni, S. cheongi and S. jeffreyi.
    Matched MeSH terms: Genetic Variation*
  20. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    Vet Parasitol, 2020 May;281:109102.
    PMID: 32289653 DOI: 10.1016/j.vetpar.2020.109102
    The present study investigated the genetic profile of the cosmopolitan cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) from Malaysia and the reference data available in the National Center for Biotechnology Information (NCBI) GenBank. A set of sequences of 100 Malaysian samples aligned as 550 characters of the cytochrome c oxidase subunit I (cox1) and 706 characters of the II (cox2) genes revealed ten haplotypes (A1-A10) and eight haplotypes (B1-B8), respectively. The concatenated sequences of cox1 and cox2 genes with a total of 1256 characters revealed 15 haplotypes (AB1-AB15). Analyses indicated that haplotype AB1 was the most frequent and the most widespread haplotype in Malaysia. Overall haplotype and nucleotide diversities of the concatenated sequences were 0.52909 and 0.00424, respectively, with moderate genetic differentiation (FST = 0.17522) and high gene flow (Nm = 1.18). The western population presented the highest genetic diversity (Hd = 0.78333, Pi = 0.01269, Nh = 9), whereas the southern population demonstrated the lowest diversity (Hd = 0.15667, Pi = 0.00019, Nh = 3). The concatenated sequences showed genetic distances ranged from 0.08 % to 4.39 %. There were three aberrant haplotypes in cox2 sequences that highly divergent, suggesting the presence of cryptic species or occurrence of introgression. In the global point of view, the aligned sequences of C. felis revealed 65 haplotypes (AA1-AA65) by the cox1 gene (n = 586), and 27 haplotypes (BB1-BB27) by the cox2 gene (n = 204). Mapping of the haplotype network showed that Malaysian C. felis possesses seven unique haplotypes in both genes with the common haplotypes demonstrated genetic affinity with C. felis from Southeast Asia for cox1 and South America for cox2. The topologies of cox1 and cox2 phylogenetic trees were concordant with relevant grouping pattern of haplotypes in the network but revealed two major lineages by which Malaysian haplotypes were closely related with haplotypes from the tropical region.
    Matched MeSH terms: Genetic Variation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links