Displaying publications 61 - 80 of 254 in total

Abstract:
Sort:
  1. Shakinah Salleh, Affrida Abu Hassan, Shuhaimi Shamsudin, Yahya Awang, Ab. Kahar Sandrang, Abdullah, Thohirah Lee
    MyJurnal
    Chrysanthemum morfolium is an important temperate cut flower and potted plant for Malaysian local market and exporter. Considering chrysanthemum as a popular vegetatively propagated ornamental plant, induce mutations for breeding purposes are more beneficial. Several of physical mutagens have been used in mutation breeding including x-rays, gamma rays and ion beams. Gamma rays and ion beams are from two different linear energy transfer (LET) which are low and high, respectively. The objective of this study was to compare the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutations on nodal explants of Chrysanthemum morifblium cv. Reagan Red'. The nodal explants were irradiated with acute gamma (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 Gy) and ion beam (0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy). The optimal dose for in vitro shoot regeneration using acute gamma was in the range of 10 to .15.0Gy and for ion beam was between 3.5 to 4.OGv. Relative biological effectiveness for ion beam was found 3.75 higher than the acute gamma. The regenerated plantlets were planted in the greenhouse at MARDI, Cameron Highland for morphological screening. The highest frequency of flower colour mutation for acute gamma was 77.8% whilst for ion beam were between 42.3 to 58.3%.
    Matched MeSH terms: Regeneration
  2. Wang YJ, Shi XP, Peng Y, Tao JP, Zhong ZC
    Sains Malaysiana, 2012;41:649-657.
    Dwarf bamboo is recognized as a significant determinant of the structure and dynamics in temperate forests. Quantitative relationships between the abundance (density and coverage) of dwarf bamboo, Fargesia nitida, and micro-environments, species diversity on the floor were estimated in an Abies faxoniana pure forest in southwest China. Understory microenvironmental conditions (daily differences temperature and moisture, RPPFD under bamboo layer and ground cover) changed dramatically with the bamboo density. Stepwise multiple regression analyses indicated that abundance of F. nitida was mainly correlated with canopy characteristics and disturbance factors in the A. faxoniana pure forest. All richness indices decreased significantly with the bamboo density and RPPFD under bamboo layer. Importance values (IV) of understory species in different bamboo densities and Detrended canonical correspondence analysis (DCCA) indicated three understory plant groups, resistant to high bamboo abundance (Group A), resistant to intermediate bamboo abundance (Group B) and sensitive to bamboo abundance (Group C). These groups mainly responded to abundance of bamboo and RPPFD under bamboo layer, resulted from the integration of characteristics of bamboo, canopy and topography factors. Different bamboo abundance had different influences on understory species diversity and groups. Dense F. nitida condition (> 10 culms/m2) had significant negative effect and 0-5 bamboo condition had not significant negative effect on understory species diversity in A. faxoniana forest. We suggest the fine-scale analysis on effects of bamboo abundance should be taken account into considering in heterogeneous patches in process of the succession and regeneration of natural forests.
    Matched MeSH terms: Regeneration
  3. Lim CK, Halim AS, Yaacob NS, Zainol I, Noorsal K
    J Biosci Bioeng, 2013 Apr;115(4):453-8.
    PMID: 23177217 DOI: 10.1016/j.jbiosc.2012.10.010
    The effects of locally produced chitosan (CPSRT-NC-bicarbonate) in the intervention of keloid pathogenesis were investigated in vitro. A human keratinocyte-fibroblast co-culture model was established to investigate the protein levels of human collagen type-I, III and V in a western blotting analysis, the secreted transforming growth factor-β1 (TGF-β1) in an enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of TGF-β1's intracellular signaling molecules (SMAD2, 3, 4 and 7) in a real-time PCR analysis. Keratinocyte-fibroblast co-cultures were maintained in DKSFM:DMEM:F12 (2:2:1) medium. Collagen type-I was found to be the dominant form in primary normal human dermal fibroblast (pNHDF) co-cultures, whereas collagen type-III was more abundant in primary keloid-derived human dermal fibroblast (pKHDF) co-cultures. Collagen type-V was present as a minor component in the skin. TGF-β1, SMAD2 and SMAD4 were expressed more in the pKHDF than the pNHDF co-cultures. Co-cultures with normal keratinocytes suppressed collagen type-III, SMAD2, SMAD4 and TGF-β1 expressions and CPSRT-NC-bicarbonate enhanced this effect. In conclusion, the CPSRT-NC-bicarbonate in association with normal-derived keratinocytes demonstrated an ability to reduce TGF-β1, SMAD2 and SMAD4 expressions in keloid-derived fibroblast cultures, which may be useful in keloid intervention.
    Matched MeSH terms: Regeneration
  4. Salem SA, Hwie AN, Saim A, Chee Kong CH, Sagap I, Singh R, et al.
    Malays J Med Sci, 2013 Jul;20(4):80-7.
    PMID: 24044001 MyJurnal
    Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells.
    Matched MeSH terms: Regeneration
  5. Fatimah SS, Chua K, Tan GC, Azmi TI, Tan AE, Abdul Rahman H
    Cytotherapy, 2013 Aug;15(8):1030-41.
    PMID: 23830235 DOI: 10.1016/j.jcyt.2013.05.003
    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture.
    Matched MeSH terms: Regeneration/physiology*
  6. Saravanan P, Ramakrishnan T, Ambalavanan N, Emmadi P, John TL
    J Oral Implantol, 2013 Aug;39(4):455-62.
    PMID: 23964779 DOI: 10.1563/AAID-JOI-D-10-00211
    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.
    Matched MeSH terms: Bone Regeneration*; Guided Tissue Regeneration, Periodontal/methods*
  7. Salem SA, Hwei NM, Bin Saim A, Ho CC, Sagap I, Singh R, et al.
    J Biomed Mater Res A, 2013 Aug;101(8):2237-47.
    PMID: 23349110 DOI: 10.1002/jbm.a.34518
    The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media. Differentiated HADSCs were then seeded onto PLGA mesh supported with collagen or fibrin. Evaluation of cell-seeded PLGA composite immersed in culture medium was performed under a light and scanning microscope. To determine if the composite is compatible with the urodynamic properties of urinary bladder, porosity and leaking test was performed. The PLGA samples were subjected to tensile testing was pulled until PLGA fibers break. The results showed that the PLGA composite is biocompatible to differentiated HADSCs. PLGA-collagen mesh appeared to be optimal as a cell carrier while the three-layered PLGA-fibrin composite is better in relation to its leaking/ porosity property. A biomechanical test was also performed for three-layered PLGA with biological adhesive and three-layered PLGA alone. The tensile stress at failure was 30.82 ± 3.80 (MPa) and 34.36 ± 2.57 (MPa), respectively. Maximum tensile strain at failure was 19.42 ± 2.24 (mm) and 23.06 ± 2.47 (mm), respectively. Young's modulus was 0.035 ± 0.0083 and 0.043 ± 0.012, respectively. The maximum load at break was 58.55 ± 7.90 (N) and 65.29 ± 4.89 (N), respectively. In conclusion, PLGA-Fibrin fulfils the criteria as a scaffold for urinary bladder reconstruction.
    Matched MeSH terms: Regeneration*
  8. Masani MY, Noll G, Parveez GK, Sambanthamurthi R, Prüfer D
    Plant Sci, 2013 Sep;210:118-27.
    PMID: 23849119 DOI: 10.1016/j.plantsci.2013.05.021
    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.
    Matched MeSH terms: Regeneration
  9. Xin LZ, Govindasamy V, Musa S, Abu Kasim NH
    Med Hypotheses, 2013 Oct;81(4):704-6.
    PMID: 23932760 DOI: 10.1016/j.mehy.2013.07.032
    Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.
    Matched MeSH terms: Regeneration/physiology*
  10. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Bone Regeneration/physiology
  11. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
    Matched MeSH terms: Bone Regeneration*
  12. Tan CW, Ng MH, Ohnmar H, Lokanathan Y, Nur-Hidayah H, Roohi SA, et al.
    Indian J Orthop, 2013 Nov;47(6):547-52.
    PMID: 24379458 DOI: 10.4103/0019-5413.121572
    BACKGROUND AND AIM: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect.

    MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.

    RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.

    CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.

    Matched MeSH terms: Nerve Regeneration
  13. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Regeneration
  14. Yahaya B, McLachlan G, Collie DD
    ScientificWorldJournal, 2013;2013:871932.
    PMID: 23533365 DOI: 10.1155/2013/871932
    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models.
    Matched MeSH terms: Regeneration*
  15. Nurul, A.A., Tan, S.J., Asiah, A.B., Norliana, G., Nor Shamsuria, O., Nurul, A.S.
    MyJurnal
    Introduction: Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic cells capable of differentiating into osteoblasts and inducing bone formation. It is a potential alternative for stem cell bone regeneration therapy. However, stem cell therapy carries the risk of immune rejection mediated by inflammatory cytokines of the human defense system. Objective: This preliminary research studies the interaction between SHED and the immune system by determining the inflammatory cytokines profile and osteogenic potential of SHED. Methods: Human fetal osteoblasts (hFOb) cell line and isolated SHED were cultured and total RNA was extracted, followed by reverse transcription cDNA synthesis. Semi-quantitative reverse transcription PCR and Multiplex PCR were performed to detect the expression levels of OPG/RANKL and TNF-α, IL-1β, IL-6, IL-8 and TGF-β in both cell types. Results: Analysis showed that SHED expressed significantly lower amounts of IL-1β, IL-6, and IL-8 compared to hFOB. IL-1β is a potent bone-resorbing factor, while IL-6 and IL-8 induce osteoclastogenesis and osteolysis respectively. SHED did not express TNF-α which stimulates osteoclastic activity. SHED demonstrated high OPG/RANKL ratio, in contrast with that of marrow stem cells described in previous studies. Our findings suggest that SHED may have improved immunomodulatory profile in terms of promoting relatively lower inflammatory reaction during transplant and enhancing bone regeneration. Conclusion: SHED has a potential to be a good source of osteoblasts for bone regeneration therapy. Further studies on the immunomodulatory properties of SHED-derived osteoblasts are necessary to enable stem cell therapy in immunocompetent hosts.
    Matched MeSH terms: Bone Regeneration
  16. Samanthi P, Mohd Puad A, Suhaimi N, Kumar S, Nor Aini A
    Sains Malaysiana, 2013;42:1505-1510.
    Kenaf (Hibiscus cannabinus L.) is a versatile plant with multiuse ranging from animal feed to a wide variety of biocomposite products such as pulp and paper and fibre reinforce plastic. Therefore genetically improved planting materials are needed to tailor made requirement of the industry. Thus, development of plant regeneration through callus is important for in vitro genetic manipulation of kenaf. Currently development of successful genetic transformation of kenaf is through in planta transformation means. In vitro shoot regeneration was conducted using leaf explants from varieties V36 and G4 treated to three different combinations of N6 Benzyl adenine (BA) and Indole-3-butyric acid (IBA). High percentage of healthy callus induction was produced in MS medium supplemented with combination of 1.5 mgL-1 BA and 0.5 mgL-1 IBA. In addition 68.7% plant regeneration was obtained in MS medium supplemented with 0.3 mgL-1 GA3. All plantlets produced roots in hormone free medium. There was no significant difference among varieties in terms of callus induction (number of callus) and plant regeneration (number of plantlets). This protocol is useful to be used for the development of gene transformation protocol of kenaf through callus.
    Matched MeSH terms: Regeneration
  17. Musa S, Xin LZ, Govindasamy V, Fuen FW, Kasim NH
    Expert Opin Biol Ther, 2014 Jan;14(1):63-73.
    PMID: 24191782 DOI: 10.1517/14712598.2014.858694
    Acute myocardial infarction is the primary cause of heart disease-related death in the world. Reperfusion therapy is currently the backbone of treatment for acute myocardial infarction albeit with many limitations. With the emergence of stem cells as potential therapeutic agents, attempts in using them to enhance cardiac function have increased exponentially. However, it has its own disadvantages, and we postulate that the primary drawback is choosing the right cell type and solving this may significantly contribute to ambitious goal of using stem cells in the regeneration medicine.
    Matched MeSH terms: Regeneration
  18. Kardia E, Yusoff NM, Zakaria Z, Yahaya B
    J Aerosol Med Pulm Drug Deliv, 2014 Feb;27(1):30-4.
    PMID: 23409833 DOI: 10.1089/jamp.2012.1020
    Cell-based therapy has great potential to treat patients with lung diseases. The administration of cells into an injured lung is one method of repairing and replacing lost lung tissue. However, different types of delivery have been studied and compared, and none of the techniques resulted in engraftment of a high number of cells into the targeted organ. In this in vitro study, a novel method of cell delivery was introduced to investigate the possibility of delivering aerosolized skin-derived fibroblasts.
    Matched MeSH terms: Regeneration*
  19. Yahya WN, Kadri NA, Ibrahim F
    Sensors (Basel), 2014 Jul 02;14(7):11714-34.
    PMID: 24991941 DOI: 10.3390/s140711714
    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.
    Matched MeSH terms: Liver Regeneration/physiology*
  20. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Bone Regeneration/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links