Displaying publications 61 - 80 of 394 in total

Abstract:
Sort:
  1. Lindgren MM, Kotilainen P, Huovinen P, Hurme S, Lukinmaa S, Webber MA, et al.
    Emerg Infect Dis, 2009 May;15(5):809-12.
    PMID: 19402977 DOI: 10.3201/eid1505.080849
    We tested the fluoroquinolone susceptibility of 499 Salmonella enterica isolates collected from travelers returning to Finland during 2003-2007. Among isolates from travelers to Thailand and Malaysia, reduced fluoroquinolone susceptibility decreased from 65% to 22% (p = 0.002). All isolates showing nonclassical quinolone resistance were from travelers to these 2 countries.
    Matched MeSH terms: Salmonella Infections/microbiology; Salmonella enterica/classification; Salmonella enterica/drug effects*; Salmonella enterica/isolation & purification
  2. Khoo CH, Sim JH, Salleh NA, Cheah YK
    Antonie Van Leeuwenhoek, 2015 Jan;107(1):23-37.
    PMID: 25312847 DOI: 10.1007/s10482-014-0300-7
    Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.
    Matched MeSH terms: Salmonella Infections/microbiology; Salmonella Infections, Animal/microbiology; Salmonella enterica/genetics; Salmonella enterica/isolation & purification; Salmonella enterica/pathogenicity*
  3. Benacer D, Thong KL, Watanabe H, Puthucheary SD
    J Microbiol Biotechnol, 2010 Jun;20(6):1042-52.
    PMID: 20622506
    Forty-seven Salmonella Typhimurium (33 zoonotic, 14 clinical) strains were tested for antimicrobial resistance using the standard disk diffusion method. Presence of relevant resistance genes and class 1 integrons were investigated by using PCR. Pulsed-field gel electrophoresis (PFGE) and plasmid profiling were carried out to determine the genomic diversity of Salmonella Typhimurium. Approximately 57.4% of S. Typhimurium were multidrug resistant (MDR) and showed high resistance rates to tetracycline (70.2%), sulphonamides (57.4%), streptomycin (53.1%), ampicillin (29.7%), nalidixic acid (27.6%), kanamycin (23.4%), chloramphenicol (21.2%) and trimethoprim (19.1%). Resistance towards cephalosporins was noted for cephalothin (27.6%), cephradine (21.2%), amoxicillin clavulanic acid (17.0%) and cephalexin (17.0%). Resistance genes, blaTEM, strA, aadA, sul1, sul2, tet(A), tet(B) and tet(C) were detected among the drug resistant strains. Thirty-three strains (70.2%) carried class 1 integrons, which were grouped in 9 different profiles. DNA sequencing identified sat, aadA, pse-1 and dfrA genes in variable regions on class 1 integrons. Thirty-five strains (74.4%) were subtyped to 22 different plasmid profiles, each with 1 - 6 plasmids (2.0 to 95 kb). PFGE subtyped the 47 strains into 39 profiles. In conclusion, high rates of multidrug-resistance were found among the Malaysian Salmonella Typhimurium strains. The emergence of multidrug-resistant Salmonella Typhimurium to cephalosporin antibiotics was also observed. The strains were very diverse and no persistent clone was observed. The emergence of MDR Salmonella Typhimurium is a worldwide problem and this report provides information for the better understanding of the prevalence and epidemiology of MDR S. Typhimurium in Malaysia.
    Matched MeSH terms: Salmonella Infections/microbiology; Salmonella Infections, Animal/microbiology; Salmonella typhimurium/classification; Salmonella typhimurium/drug effects*; Salmonella typhimurium/genetics*
  4. Muhamad Harish S, Sim KS, Najimudin N, Aziah I
    Genome Announc, 2015;3(6).
    PMID: 26564032 DOI: 10.1128/genomeA.01261-15
    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013.
    Matched MeSH terms: Salmonella typhi; Salmonella enterica
  5. Rusul G, Khair J, Radu S, Cheah CT, Yassin RM
    Int J Food Microbiol, 1996 Dec;33(2-3):183-94.
    PMID: 8930704
    A study was conducted to estimate the prevalence of Salmonella among broilers retailed at wet-markets and processing plants. Litter and feed samples obtained from both broiler and breeder farms were also examined for Salmonella. A total of 158 out of 445 (35.5%) and 52 out of 104 (50.0%) broiler carcasses obtained from wet-markets and processing plants were contaminated with Salmonella, respectively. Salmonella was isolated from 14 out of 98 (14.3%) samples of intestinal content. Litter samples from broiler and breeder farms were positive for Salmonella, 8/40 (20%) and 2/10 (20%), respectively. Salmonella isolates (230) belonging to 15 different serovars were isolated. Predominant serovars were S. enteritidis, S. muenchen, S. kentucky and S. blockley.
    Matched MeSH terms: Salmonella/isolation & purification*
  6. Lee WS, Puthucheary SD, Boey CC
    J Paediatr Child Health, 1998 Aug;34(4):387-90.
    PMID: 9727185
    OBJECTIVE: To study the clinical features of non-typhoid Salmonella gastroenteritis and the incidence, risk factors and outcome of invasive complications in urban Malaysian children. To describe the serotypes of Salmonella species isolated and the pattern of antibiotic susceptibility.

    METHODOLOGY: Retrospective review of a group of 131 children with non-typhoid Salmonella gastroenteritis seen at the University Hospital, Kuala Lumpur, Malaysia from January 1994 to December 1996.

    RESULTS: Sixty-seven percent were infants below one year of age. Fever and vomiting were seen in nearly half of children. Seven children (5.3%) had invasive complications: 5 bacteraemia and 2 meningitis. Age below 6 months, fever > 38.0 degrees C, and dehydration on admission were significantly associated with invasive complications. The commonest serotypes isolated were S. enteritidis, S. paratyphi B, and S. bovis-morbificans. A total of 94-100% of isolates were susceptible to commonly prescribed antibiotics.

    CONCLUSIONS: Children with Salmonella gastroenteritis below 6 months of age who are febrile and dehydrated should be treated empirically with antibiotics until the result of blood culture is available.

    Matched MeSH terms: Salmonella/drug effects; Salmonella/isolation & purification; Salmonella Infections/complications; Salmonella Infections/drug therapy; Salmonella Infections/microbiology; Salmonella Infections/epidemiology*
  7. Chapman SJ
    Med J Malaysia, 1980 Sep;35(1):7-8.
    PMID: 7254003
    A survey of lettuce sold in Penang markets showed them to be heavily contaminated with faecal coliforms and nearly half the samples were positive for Salmonella or Shigella. The use of night soil on these vegetables is a likely cause of gastroenteritis.
    Matched MeSH terms: Salmonella/isolation & purification*
  8. Jegathesan M, Rampal L, Lim YS
    Med J Malaysia, 1983 Dec;38(4):308-10.
    PMID: 6599988
    A survey on the incidence of Salmonellae in soil was conducted on 12 kindergartens in the Klang District, The organism. was isolated from five (three urban and two rural) kindergartens from one or more soil samples tested. Ten isolates comprising six serotypes, namely, Salmonella bareilly, S. haifa, S. abony, S. weltevreden, S. agona and S. stanley, were encountered. The possible role that these soil isolates may play in the transmission. of salmonellae is discussed. The need to use more than one media in the detection of salmonellae is emphasised.
    Matched MeSH terms: Salmonella/isolation & purification*
  9. Singh RB
    Med J Malaya, 1966 Dec;21(2):177-98.
    PMID: 4227390
    Matched MeSH terms: Salmonella Infections, Animal/immunology*
  10. Chai-Hoon, K., Jiun-Horng, S., Shiran, M.S., Son, R., Sabrina, S., Noor Zaleha, A.S., et al.
    MyJurnal
    Caenorhabditis elegans (C. elegans) have been widely used as an infection model for mammalian related pathogens with promising results. The bacterial factors required for virulence in non-mammalian host C. elegans play a role in mammalian systems. Previous reported that Salmonella found in vegetable and poultry meat could be potential health hazards to human. This study evaluated the pathogenicity of various serovars of Salmonella enterica (S. enterica) that recovered from local indigenous vegetables and poultry meat using C. elegans as a simple host model. Almost all S. enterica isolates were capable of colonizing the intestine of C. elegans, causing a significant reduction in the survival of nematodes. The colonization of Salmonella in C. elegans revealed that the ability of S. enterica in killing C. elegans correlates with its accumulation in the intestine to achieve full pathogenicity. Using this model, the virulence mechanisms of opportunistic pathogenic S. enterica were found to be not only relevant for the interactions of the bacteria with C. elegans but also with mammalian hosts including humans. Hence, C. elegans model could provide valuable insight into preliminary factors from the host that contributes to the environmental bacterial pathogenesis scenario.
    Matched MeSH terms: Salmonella; Salmonella enterica
  11. Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, et al.
    Biosensors (Basel), 2021 Sep 18;11(9).
    PMID: 34562936 DOI: 10.3390/bios11090346
    Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
    Matched MeSH terms: Salmonella*
  12. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Salmonella/genetics
  13. Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, et al.
    Int J Food Microbiol, 2023 Jun 02;394:110184.
    PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184
    Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
    Matched MeSH terms: Salmonella typhimurium*
  14. Yusof YA, Azizul Hasan ZA, Abd Maurad Z
    Int J Toxicol, 2024;43(2):157-164.
    PMID: 38048784 DOI: 10.1177/10915818231217041
    Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.
    Matched MeSH terms: Salmonella typhimurium/genetics
  15. Chia TW, Nguyen VT, McMeekin T, Fegan N, Dykes GA
    Appl Environ Microbiol, 2011 Jun;77(11):3757-64.
    PMID: 21478319 DOI: 10.1128/AEM.01415-10
    Bacterial attachment onto materials has been suggested to be stochastic by some authors but nonstochastic and based on surface properties by others. We investigated this by attaching pairwise combinations of two Salmonella enterica serovar Sofia (S. Sofia) strains (with different physicochemical and attachment properties) with one strain each of S. enterica serovar Typhimurium, S. enterica serovar Infantis, or S. enterica serovar Virchow (all with similar physicochemical and attachment abilities) in ratios of 0.428, 1, and 2.333 onto glass, stainless steel, Teflon, and polysulfone. Attached bacterial cells were recovered and counted. If the ratio of attached cells of each Salmonella serovar pair recovered was the same as the initial inoculum ratio, the attachment process was deemed stochastic. Experimental outcomes from the study were compared to those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. Significant differences (P < 0.05) between the initial and the attached ratios for serovar pairs containing S. Sofia S1296a for all different ratios were apparent for all materials. For S. Sofia S1635-containing pairs, 7 out of 12 combinations of serovar pairs and materials had attachment ratios not significantly different (P > 0.05) from the initial ratio of 0.428. Five out of 12 and 10 out of 12 samples had attachment ratios not significantly different (P > 0.05) from the initial ratios of 1 and 2.333, respectively. These results demonstrate that bacterial attachment to different materials is likely to be nonstochastic only when the key physicochemical properties of the bacteria were significantly different (P < 0.05) from each other. XDLVO theory could successfully predict the attachment of some individual isolates to particular materials but could not be used to predict the likelihood of stochasticity in pairwise attachment experiments.
    Matched MeSH terms: Salmonella enterica/physiology*
  16. Sulaiman W
    Malays J Med Sci, 2006 Jul;13(2):64-5.
    PMID: 22589607 MyJurnal
    Malaysia is endemic for both these diseases and one should not be too surprised when faced with a diagnosis of co-infection of typhoid and malaria, as have been described in India and Canada. Here we describe one such case of Salmonella typhi and Plasmodium vivax infection.
    Matched MeSH terms: Salmonella typhi; Salmonella enterica
  17. Valayatham V
    Int J Infect Dis, 2009 Mar;13(2):e53-5.
    PMID: 18829361 DOI: 10.1016/j.ijid.2008.06.015
    Salmonella sp is a significant cause of morbidity and mortality. Although commonly infecting the gastrointestinal system, other presentations are not unheard of. Salmonella is an unlikely and an unusual cause of genital tract infection. We describe a woman with suspected pelvic inflammatory disease eventually confirmed as Salmonella O C2 infection.
    Matched MeSH terms: Salmonella/classification*; Salmonella/drug effects; Salmonella/isolation & purification
  18. Kalai Chelvam K, Yap KP, Chai LC, Thong KL
    PLoS One, 2015;10(5):e0126207.
    PMID: 25946205 DOI: 10.1371/journal.pone.0126207
    Salmonella enterica serovar Typhi (S. Typhi) is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC) biofilm inoculator (96-well peg lid) and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates) and D-threonine (amino acid) were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among different S. Typhi strains has suggested the possible involvement of various metabolic pathways that might be related to the virulence and pathogenesis of this host-restricted human pathogen. The data serve as a caveat for future in-vivo studies to investigate the carbon metabolic activity to the pathogenesis of S. Typhi.
    Matched MeSH terms: Salmonella typhi/genetics; Salmonella typhi/pathogenicity*; Salmonella typhi/physiology*
  19. Goh YL, Puthucheary SD, Thong KL
    PMID: 11414415
    A representative sample of 20 isolates of Salmonella weltevreden strains from stool cultures of patients admitted at the University Hospital, Kuala Lumpur, Malaysia were analyzed. All the strains were susceptible to ampicillin, ceftriaxone, ciprofloxacin, chloramphenicol, tetracycline, trimethoprim, gentamicin and co-trimoxazole. Ribosomal RNA gene restriction pattern analysis of PstI-digested DNA gave three ribotypes while pulsed-field gel electrophoresis (PFGE) analysis of XbaI-digested DNA gave ten distinct profiles. PFGE was more discriminative than ribotyping in distinguishing the strains. The majority of the strains analyzed were very closely related with similarity coefficient values ranging from 0.8 to 1.0. Both PFGE and ribotyping could distinguish one of the strains which was obtained from a patient following a bone marrow transplant for beta-thalassemia major, indicating that this particular strain was unrelated to the rest of the strains from patients with acute gastroenteritis.
    Matched MeSH terms: Salmonella/drug effects; Salmonella/genetics; Salmonella/isolation & purification*
  20. Aarestrup FM, Lertworapreecha M, Evans MC, Bangtrakulnonth A, Chalermchaikit T, Hendriksen RS, et al.
    J Antimicrob Chemother, 2003 Oct;52(4):715-8.
    PMID: 12972453
    This study was conducted to investigate the occurrence of antimicrobial resistance among Salmonella Weltevreden isolates from different sources in South-East Asia (Indonesia, Laos, Malaysia, Taiwan, Thailand, Vietnam), Australia, Denmark, New Zealand and the USA.
    Matched MeSH terms: Salmonella enterica/drug effects*; Salmonella enterica/genetics*; Salmonella enterica/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links