Displaying publications 61 - 80 of 259 in total

Abstract:
Sort:
  1. Richardson JS, Sethi G, Lee GS, Malek SN
    BMC Complement Altern Med, 2016 Oct 12;16(1):389.
    PMID: 27729078
    Cancer has been one of the leading causes of mortality in this era. Ruta angustifolia L. Pers has been traditionally used as an abortifacient, antihelmintic, emmenagogue and ophthalmic. In Malaysia and Singapore, the local Chinese community used it for the treatment of cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  2. Teoh SL, Das S
    Curr Drug Targets, 2018;19(2):128-143.
    PMID: 28294046 DOI: 10.2174/1389450118666170309143419
    BACKGROUND: The Notch pathway is an evolutionarily conserved, intercellular signalling system which is present in all multicellular organisms and mammals. The Notch pathway plays an important role in the embryonic development as it controls cell proliferation, cell differentiation and binary cell fate decisions.

    OBJECTIVE: In the present review, we highlight the Notch signalling pathway components i.e. Notch receptors, ligands, effector, and their regulators. We also discuss the tumor biology of the Notch pathway involved in various cancers.

    RESULTS: Interestingly, the Notch signalling pathway is dysregulated in many cancers. Notch may serve as oncogene or tumor suppressor and plays an important role in cancers of the liver, pancreas, endometrium of uterus, ovary, prostate, bladder and colon. The activation of Notch pathway plays a vital role in the progression of some cancer. In addition, Notch pathway activation was also shown to drive chemoresistance in cancer, as well. Chemotherapeutically, combined NOTCH1 inhibitor synergistically attenuated chemotherapy-enriched cancer stem cell population both in vitro and in vivo. This may prove to be beneficial in the treatment of cancer.

    CONCLUSION: The Notch inhibitors possess anti-proliferative effects on cancer, thereby serving as a new treatment for cancer.

    Matched MeSH terms: Signal Transduction/drug effects*
  3. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, et al.
    Nutrients, 2019 Oct 19;11(10).
    PMID: 31635074 DOI: 10.3390/nu11102525
    This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer's disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
    Matched MeSH terms: Signal Transduction/drug effects*
  4. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Signal Transduction/drug effects
  5. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

    Matched MeSH terms: Signal Transduction/drug effects
  6. Angelopoulou E, Paudel YN, Bougea A, Piperi C
    J Neurosci Res, 2021 Sep;99(9):2117-2133.
    PMID: 34115895 DOI: 10.1002/jnr.24895
    The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential.
    Matched MeSH terms: Signal Transduction/drug effects
  7. Samuel VP, Dahiya R, Singh Y, Gupta G, Sah SK, Gubbiyappa SK, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):133-141.
    PMID: 31679276 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029388
    The current study is a review of the literature on patients with diabetes who are diagnosed with colorectal cancer (CRC), encompassing recent research on CRC and the molecular level changes occurring in these patients on the basis of varying environmental as well as non-environmental factors. It has been noted that nearly 50% of all patients undergo the systemic treatment module; however, most of them exhibit drug resistance. In addition, targeted gene therapy has also been used in treatment but has been found to be effective only in patients with a specified molecular profile (or else this might lead to an increased risk of developing resistant mutations). This has led to increasing interest among researchers in finding innovative treatment options. Metformin, a biguanide, has been widely used in treating diabetes. The drug has been reportedly used in cases of hypothesis-generating retrospective population studies of diabetic patients showing reduced incidence of cancer. Metformin helps in reduction of excess insulin levels that possess various effects on cell signaling and metabolism. Nonetheless, there is need for an in-depth study on its molecular mechanism to fill any existing research gaps.
    Matched MeSH terms: Signal Transduction/drug effects
  8. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    Sci Rep, 2021 02 26;11(1):4773.
    PMID: 33637843 DOI: 10.1038/s41598-021-83163-7
    Cytoprotection involving the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is an important preventive strategy for normal cells against carcinogenesis. In our previous study, the chemopreventive potential of (E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) has been elucidated through its cytoprotective effects against DNA and mitochondrial damages in the human colon fibroblast CCD-18Co cell model. Therefore this study aimed to investigate the molecular mechanisms underlying BK3C231-induced cytoprotection and the involvement of the Nrf2/ARE pathway. The cells were pretreated with BK3C231 before exposure to carcinogen 4-nitroquinoline N-oxide (4NQO). BK3C231 increased the protein expression and activity of cytoprotective enzymes namely NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST) and heme oxygenase-1 (HO-1), as well as restoring the expression of glutamate-cysteine ligase catalytic subunit (GCLC) back to the basal level. Furthermore, dissociation of Nrf2 from its inhibitory protein, Keap1, and ARE promoter activity were upregulated in cells pretreated with BK3C231. Taken together, our findings suggest that BK3C231 exerts cytoprotection by activating the Nrf2 signaling pathway which leads to ARE-mediated upregulation of cytoprotective proteins. This study provides new mechanistic insights into BK3C231 chemopreventive activities and highlights the importance of stilbene derivatives upon development as a potential chemopreventive agent.
    Matched MeSH terms: Signal Transduction/drug effects
  9. Haque MA, Jantan I, Harikrishnan H, Abdul Wahab SM
    Planta Med, 2018 Nov;84(17):1255-1264.
    PMID: 29906814 DOI: 10.1055/a-0637-9936
    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
    Matched MeSH terms: Signal Transduction/drug effects*
  10. Sayem ASM, Arya A, Karimian H, Krishnasamy N, Ashok Hasamnis A, Hossain CF
    Molecules, 2018 Jan 28;23(2).
    PMID: 29382104 DOI: 10.3390/molecules23020258
    Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4) from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.
    Matched MeSH terms: Signal Transduction/drug effects*
  11. Sisin NNT, Kong AR, Edinur HA, Jamil NIN, Che Mat NF
    Appl Biochem Biotechnol, 2024 Jul;196(7):4234-4255.
    PMID: 37922032 DOI: 10.1007/s12010-023-04762-w
    E6 and E7 human papillomavirus (HPV) oncoproteins play a significant role in the malignant transformation of infected cervical cancer cells via suppression of tumour suppressor pathways by targeting p53 and pRb, respectively. This study aimed to investigate the anticancer effects of Oroxylum indicum (OI) leaves' methanol extract on SiHa cervical cancer cells. Expression of apoptosis-related proteins (Bcl-2, caspase (cas)-3, and cas-9), viral oncoproteins (E6 and E7), and tumour suppressor proteins (p53 and pRb) were evaluated using western blot analysis before and after E6/E7 small interfering RNAs (siRNAs) transfection. In addition, the E6/E7 mRNA expression levels were assessed with real-time (RT)-PCR. The present study showed that the OI extract effectively hindered the proliferation of SiHa cells and instigated increments of cas-3 and cas-9 expressions but decreased the Bcl-2 expressions. The OI extract inhibited E6/E7 viral oncoproteins, leading to upregulation of p53 and pRb tumour suppressor genes in SiHa cells. Additionally, combinatorial treatment of OI extract and gossypin flavonoid induced restorations of p53 and pRb. Treatment with OI extract in siRNA-transfected cells also further suppressed E6/E7 expression levels and further upregulations of p53 and pRb proteins. In conclusion, OI extract treatment on siRNAs-transfected SiHa cells can additively and effectively block E6- and E7-dependent p53 and pRb degradations. All these data suggest that OI could be explored for its chemotherapeutic potential in cervical cancer cells with HPV-integrated genomes.
    Matched MeSH terms: Signal Transduction/drug effects
  12. Ismail NI, Othman I, Abas F, H Lajis N, Naidu R
    Int J Mol Sci, 2019 May 17;20(10).
    PMID: 31108984 DOI: 10.3390/ijms20102454
    Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
    Matched MeSH terms: Signal Transduction/drug effects
  13. Yap WY, Hwang JS
    Molecules, 2018 Oct 04;23(10).
    PMID: 30287801 DOI: 10.3390/molecules23102537
    A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Tew WY, Tan CS, Yan CS, Loh HW, Wang X, Wen X, et al.
    Hypertens Res, 2024 Sep;47(9):2416-2434.
    PMID: 38914702 DOI: 10.1038/s41440-024-01652-4
    Hesperetin is one of the prominent flavonoids found in citrus fruit. Several research studies have reported that hesperetin can promote vasodilation in vascular tissue by increasing the level of nitric oxide and cyclic nucleotides. However, these may not be the only pathway for hesperetin to exert its vasodilatory effect. In addition to vasodilation, hesperetin has been found to carry an antihypertensive effect through intraperitoneal injection, although no study has comprehensively investigated the antihypertensive effect of hesperetin through oral administration. Therefore, this study aimed to determine the possible mechanism pathways involved in hesperetin-induced vasodilation and investigated its antihypertensive effects on hypertensive rats' model via oral administration. The ex vivo experimental findings showed that the NO/sGC/cGMP signalling pathway was involved in hesperetin-mediated vasodilation. Moreover, hesperetin activated the AC/cAMP/PKA pathway through PGI2 and activated the β2-adrenergic receptor. Hesperetin can act as a voltage-gated potassium channel (KV) and ATP-sensitive potassium channel (KATP) opener. The intracellular calcium in vascular smooth muscle was reduced by hesperetin through blocking the voltage-operated calcium channels (VOCC) and inositol triphosphate receptor (IP3R). In the in vivo assessment, hesperetin shows a significant decrease in Spontaneously Hypertensive rats' blood pressure following 21 days of oral treatment. The sub-chronic toxicity assessment demonstrated that hesperetin exhibited no deleterious effects on the body weights, clinical biochemistry and haematological profile of Sprague-Dawley rats. This study implies that hesperetin holds promise as a potential medication for hypertension treatment, devoid of undesirable side effects.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Zhang X, Wang J, Xiang S, Zhao L, Lv M, Duan Y, et al.
    Am J Chin Med, 2024;52(6):1795-1817.
    PMID: 39347955 DOI: 10.1142/S0192415X24500708
    Diabetic kidney disease (DKD) has become the primary cause of end-stage renal disease (ESRD), causing an urgent need for preventive strategies for DKD. Astragaloside I (ASI), a bioactive saponin extracted from Astragalus membranaceus (Fisch.) Bunge has been demonstrated to possess a variety of biological activities. This study investigates the therapeutic potential of ASI in DKD and the underlying molecular mechanism using db/db mice in vivo and high glucose (HG)-induced SV40-MES-13 cells in vitro. The results indicated that ASI significantly ameliorated renal dysfunction and mitigated the pathological alterations in the renal tissues of db/db mice. Moreover, ASI was found to reduce the levels of renal fibrosis makers and suppress the activation of TGF-β1/Smad2/3 pathway in both db/db mice and HG-induced SV40-MES-13 cells. Furthermore, ASI downregulated HDAC3 expression, upregulated Klotho expression, and enhanced Klotho release. ASI is directly bound to HDAC3, and the beneficial effects of ASI on Klotho/TGF-β1/Smad2/3-mediciated renal fibrosis in DKD were reversed by the HDAC3 agonist ITSA-1. In conclusion, ASI attenuates renal fibrosis in DKD, and may act through concurrently inhibiting HDAC3 and TGF-β1, thereby regulating HDAC3-mediciated Klotho/TGF-β1/Smad2/3 pathway.
    Matched MeSH terms: Signal Transduction/drug effects
  16. Seow SLS, Hong SL, Lee GS, Malek SNA, Sabaratnam V
    BMC Complement Altern Med, 2017 Jun 24;17(1):334.
    PMID: 28646880 DOI: 10.1186/s12906-017-1837-6
    BACKGROUND: Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells.

    METHODS: The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors.

    RESULTS: 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively.

    CONCLUSIONS: The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.

    Matched MeSH terms: Signal Transduction/drug effects
  17. Chai AWY, Tan YH, Ooi S, Yee PS, Yee SM, Lightfoot H, et al.
    Cancer Res Commun, 2024 Nov 01;4(11):2919-2932.
    PMID: 39360810 DOI: 10.1158/2767-9764.CRC-24-0136
    Mechanistically guided drug repurposing has been made possible by systematically integrating pharmacologic and CRISPR-Cas9 screen data. Our study discovers the biomarker and cell death mechanisms underpinning sensitivity toward AZD5582, an antagonist of the inhibitor of apoptosis family protein. Our findings have important implications for improving future trial design for patients with OSCC using this emerging drug class.
    Matched MeSH terms: Signal Transduction/drug effects
  18. Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, et al.
    Genet. Mol. Res., 2016 Jun 17;15(2).
    PMID: 27323195 DOI: 10.4238/gmr.15028150
    Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia. Neonatal cardiomyocytes were isolated from 0- to 2-day-old Sprague Dawley rats, and given 100 μM CoCl2, 150 μM H2O2, or placed in a hypoxia chamber for 24 h. The ameliorative effects of 100-μM UDCA treatment for 12 h were then assessed using MTS, QuantiGene Plex (for Smpd1 and Smpd2), and SMase assays, beating rate assessment, and western blotting (for ERK and Akt). Data were analyzed by the paired Student t-tests and one-way analyses of variance. Cell viability decreased significantly after H2O2 (85%), CoCl2 (50%), and hypoxia chamber (52%) treatments compared to the untreated control (100%). UDCA significantly counteracted the effects of chamber- and CoCl2- induced hypoxia on viability and beating rate. However, no significant differences were observed in acid SMase gene and protein expression between the untreated, CoCl2, and UDCA-CoCl2 groups. In contrast, neutral SMase gene and protein expression did significantly differ between the latter two groups. ERK and Akt phosphorylation was higher in hypoxic cardiomyocytes treated with UDCA than those given CoCl2 alone. In conclusion, UDCA regulates the activation of survival signaling proteins and SMases in neonatal rat cardiomyocytes during hypoxia.
    Matched MeSH terms: Signal Transduction/drug effects
  19. Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, et al.
    Oncogene, 2016 Jul 28;35(30):3965-75.
    PMID: 26616855 DOI: 10.1038/onc.2015.466
    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
    Matched MeSH terms: Signal Transduction/drug effects*
  20. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: Signal Transduction/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links