Displaying publications 61 - 80 of 754 in total

Abstract:
Sort:
  1. Ahmad SZ, Ahamad MS, Yusoff MS
    Waste Manag Res, 2014 Jan;32(1):24-33.
    PMID: 24241167 DOI: 10.1177/0734242X13507313
    Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process.
    Matched MeSH terms: Software
  2. As'arry A, Md Zain MZ, Mailah M, Hussein M
    Proc Inst Mech Eng H, 2013 Nov;227(11):1171-80.
    PMID: 23901066 DOI: 10.1177/0954411913494325
    Patients with hand tremors may find routine activities such as writing and holding objects affected. In response to this problem, an active control technique has been examined in order to lessen the severity of tremors. In this article, an online method of a hybrid proportional-integral control with active force control strategy for tremor attenuation is presented. An intelligent mechanism using iterative learning control is incorporated into the active force control loop to approximate the estimation mass parameter. Experiments were conducted on a dummy hand model placed horizontally in a tremor test rig. When activated by a shaker in the vertical direction, this resembles a postural tremor condition. In the proportional-integral plus active force control, a linear voice coil actuator is used as the main active tremor suppressive element. A sensitivity analysis is presented to investigate the robustness of the proposed controller in a real-time control environment. The findings of this study demonstrate that the intelligent active force control and iterative learning controller show excellent performance in reducing tremor error compared to classic pure proportional, proportional-integral and hybrid proportional-integral plus active force control controllers.
    Matched MeSH terms: Software
  3. Abdul Karim R, Zakaria NF, Zulkifley MA, Mustafa MM, Sagap I, Md Latar NH
    Biomed Eng Online, 2013;12:21.
    PMID: 23496940 DOI: 10.1186/1475-925X-12-21
    Telepointer is a powerful tool in the telemedicine system that enhances the effectiveness of long-distance communication. Telepointer has been tested in telemedicine, and has potential to a big influence in improving quality of health care, especially in the rural area. A telepointer system works by sending additional information in the form of gesture that can convey more accurate instruction or information. It leads to more effective communication, precise diagnosis, and better decision by means of discussion and consultation between the expert and the junior clinicians. However, there is no review paper yet on the state of the art of the telepointer in telemedicine. This paper is intended to give the readers an overview of recent advancement of telepointer technology as a support tool in telemedicine. There are four most popular modes of telepointer system, namely cursor, hand, laser and sketching pointer. The result shows that telepointer technology has a huge potential for wider acceptance in real life applications, there are needs for more improvement in the real time positioning accuracy. More results from actual test (real patient) need to be reported. We believe that by addressing these two issues, telepointer technology will be embraced widely by researchers and practitioners.
    Matched MeSH terms: Software
  4. Abdullah MH, Othman Z, Noor HM, Arshad SS, Yusof AK, Jamal R, et al.
    J Cardiol, 2012 Sep;60(3):192-203.
    PMID: 22738689 DOI: 10.1016/j.jjcc.2012.05.009
    The molecular basis of coronary artery disease (CAD) has been widely studied in the western world but there is no published work on the Malaysian population. This study looked at the global gene expression profiling of the peripheral blood of patients with CAD from the 3 main ethnic groups in Malaysia. Male subjects selected were based on angiographically confirmed CAD (≥50% stenosis) and normal control subjects (0% stenosis) with age range of 55.6±5.3 and 51.0±5.5 years, respectively. The global gene expression of 12 angiographically documented CAD patients and 11 matched control subjects were performed. The combined group samples identified 6 up regulated differential expression (DE) genes (GHRL, LTA, CBS, HP, ITGA2B, and OLR1) and 12 down regulated DE genes (IL18R1, ITGA2B, IL18RAP, HP, OLR1, SOD2 ITGB3, IL1B, MMP9, PLA2G7, UTS2, and CBS) to be involved in CAD at the fold change of 1.3 with fault discovery rate (FDR) of 1%. Three genes, MMP9, IL1B, and SOD2 were down regulated in all the 3 ethnic groups making them potential biomarker candidates for CAD across all three ethnicities. Further verification in a cohort study is needed.
    Matched MeSH terms: Software
  5. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
    Matched MeSH terms: Software
  6. Gouwanda D, Senanayake SM
    J Med Eng Technol, 2011 Nov;35(8):432-40.
    PMID: 22074136 DOI: 10.3109/03091902.2011.627080
    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.
    Matched MeSH terms: Software
  7. Ismail Hossain M, Samir BB, El-Harbawi M, Masri AN, Abdul Mutalib MI, Hefter G, et al.
    Chemosphere, 2011 Oct;85(6):990-4.
    PMID: 21794892 DOI: 10.1016/j.chemosphere.2011.06.088
    A new mathematical model has been developed that expresses the toxicities (EC₅₀ values) of a wide variety of ionic liquids (ILs) towards the freshwater flea Daphnia magna by means of a quantitative structure-activity relationship (QSAR). The data were analyzed using summed contributions from the cations, their alkyl substituents and anions. The model employed multiple linear regression analysis with polynomial model using the MATLAB software. The model predicted IL toxicities with R²=0.974 and standard error of estimate of 0.028. This model affords a practical, cost-effective and convenient alternative to experimental ecotoxicological assessment of many ILs.
    Matched MeSH terms: Software
  8. Senanayake CM, Senanayake SM
    IEEE Trans Inf Technol Biomed, 2010 Sep;14(5):1173-9.
    PMID: 20801745 DOI: 10.1109/TITB.2010.2058813
    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.
    Matched MeSH terms: Software
  9. Hassan E, Liau KM, Ariffin I, Halim Yusof A
    Spine (Phila Pa 1976), 2010 Jun 1;35(13):1253-6.
    PMID: 20461037 DOI: 10.1097/BRS.0b013e3181c1172b
    A cross sectional study of thoracic pedicle morphometry in the immature spine of Malaysian population using reformatted computed tomographic (CT) images.
    Matched MeSH terms: Software
  10. Reza AW, Eswaran C
    J Med Syst, 2011 Feb;35(1):17-24.
    PMID: 20703589 DOI: 10.1007/s10916-009-9337-y
    The increasing number of diabetic retinopathy (DR) cases world wide demands the development of an automated decision support system for quick and cost-effective screening of DR. We present an automatic screening system for detecting the early stage of DR, which is known as non-proliferative diabetic retinopathy (NPDR). The proposed system involves processing of fundus images for extraction of abnormal signs, such as hard exudates, cotton wool spots, and large plaque of hard exudates. A rule based classifier is used for classifying the DR into two classes, namely, normal and abnormal. The abnormal NPDR is further classified into three levels, namely, mild, moderate, and severe. To evaluate the performance of the proposed decision support framework, the algorithms have been tested on the images of STARE database. The results obtained from this study show that the proposed system can detect the bright lesions with an average accuracy of about 97%. The study further shows promising results in classifying the bright lesions correctly according to NPDR severity levels.
    Matched MeSH terms: Software
  11. Amouzgar P, Khalil HP, Salamatinia B, Abdullah AZ, Issam AM
    Bioresour Technol, 2010 Nov;101(21):8396-401.
    PMID: 20639118 DOI: 10.1016/j.biortech.2010.05.061
    In this study optimization of drying oil palm trunk core lumber (OPTCL) biomass using microwave radiation was reported. Optimizing of the drying conditions using microwave, avoid burning, shrinkage and increasing the permeability of OPT was aimed to develop a new value added material. A set of experiments was designed by central composite design using response surface methodology (RSM) to statistically evaluate the findings. Three independent process variables including time (2-10 min), sample weight (300-1000 g) and input power (660-3300 W) were studied under the given conditions designed by Design Expert software. The results showed the effectiveness of microwave drying in reducing the time and better removal of moisture as compared to that of oven drying with no significant changes. Employing optimum conditions at 6.89 min of time with a microwave power set at 4 for a sample of 1000 g, predicting 14.62% of moisture content.
    Matched MeSH terms: Software
  12. Ravichandran V, Shalini S, Sundram K, Sokkalingam AD
    Eur J Med Chem, 2010 Jul;45(7):2791-7.
    PMID: 20347187 DOI: 10.1016/j.ejmech.2010.02.062
    A linear quantitative structure activity relationship (QSAR) model is presented for modeling and predicting the inhibition of HIV-1 integrase. The model was produced by using the stepwise multiple linear regression technique on a database that consists of 67 recently discovered 1,3,4-oxadiazole substituted naphthyridine derivatives. The developed QSAR model was evaluated for statistical significance and predictive power. The key conclusion of this study is that valence connectivity index order 1, lowest unoccupied molecular orbital and dielectric energy significantly affect the inhibition of HIV-1 integrase activity by 1,3,4-oxadiazole substituted naphthyridine derivatives. The selected physicochemical descriptors serve as a first guideline for the design of novel and potent antagonists of HIV-1 integrase.
    Matched MeSH terms: Software
  13. Abdul Rahman MB, Karjiban RA, Salleh AB, Jacobs D, Basri M, Thean Chor AL, et al.
    Protein Pept Lett, 2009;16(11):1360-70.
    PMID: 20001926
    The stability of biocatalysts is an important criterion for a sustainable industrial operation economically. T1 lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1 (T1 lipase) that was isolated from palm oil mill effluent (POME) in Malaysia. We report here the results of high temperatures molecular dynamics (MD) simulations of T1 lipase in explicit solvent. We found that the N-terminal moiety of this enzyme was accompanied by a large flexibility and dynamics during temperature-induced unfolding simulations which preceded and followed by clear structural changes in two specific regions; the small domain (consisting of helices alpha3 and alpha5, strands beta1 and beta2, and connecting loops) and the main catalytic domain or core domain (consisting of helices alpha6- alpha9 and connecting loops which located above the active site) of the enzyme. The results suggest that the small domain of model enzyme is a critical region to the thermostability of this organism.
    Matched MeSH terms: Software
  14. Syed-Mohamad SM
    Comput Methods Programs Biomed, 2009 Jan;93(1):83-92.
    PMID: 18789553 DOI: 10.1016/j.cmpb.2008.07.011
    To develop and implement a collective web-based system to monitor child growth in order to study children with malnutrition.
    Matched MeSH terms: Software
  15. Mohammed S, Orabi A, Fiaidhi J, Orabi M, R. Benlamri
    Int J Electron Healthc, 2008;4(1):24-42.
    PMID: 18583294
    Web 2.0 technologies such as wikis, podcasts/vodcasting, blogs and semantic portals could be quite effective tools in e-learning for health professionals. If effectively deployed, such tools can offer a way to enhance students', clinicians' and patients' learning experiences, and deepens levels of learners' engagement and collaboration within medical learning environments. However, Web 2.0 requires simplicity of use as well as integration with modern web technologies. This article presents a Web 2.0 telemedical portal, which provides a social community-learning paradigm from the desk of the physician, the student, the hospital administrator, or the insurer. The presented portal utilises RESTful web services and techniques like content syndication, mushups and Asynchronous JavaScript API and XML (AJAX). The designed portal is based on the Apache Cocoon RESTful framework for sharing Digital Imaging and Communications in Medicine (DICOM) medical case studies. Central to this article is the integration between Cocoon and AJAX. The proposed AJAX-Cocoon portal utilises a JSP portlet architecture, which manages the interaction dynamics and overcomes the shortcomings of the JSR 168 and WSRP 1.0 standards.
    Matched MeSH terms: Software
  16. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
    Matched MeSH terms: Software Design
  17. Kamarul T, Ahmad TS, Loh WY
    Med J Malaysia, 2006 Dec;61 Suppl B:37-44.
    PMID: 17600991
    Hand grip strength measurement is a recognized part of hand function assessment. The standard measurement using the Jamar dynamometer and comparing these results to the recommended normal values suggested by the manufacturers of the Jamar was questioned as these values were based on Western population. A study comparing a novel method of predicting grip strength using our software was conducted on 25 normal subjects using the LIDO kinetic workset (Group A and B ). These results were then compared against our predictive software (Group A) and the expected values supplied together with the Jamar Dynamometer (Group B). In another group, 22 normal subjects were tested using the Jamar (Group C and D) and then matched against the predicted values using their recommended chart (Group C). The last group (Group D) was tested using the Jamar but the values attained were compared to the results from our software. In group A, the predictability of our predictive method was 100% (both R & L) as compared to (R = 64%, L = 68%) in group B, (R = 27.3%, L = 59.1%) in group C and (R = 81.8%, L = 86.4%) in group D. The differences between the predictability of both methods were statistically significant. The data collected using both the Jamar and the LIDO kinetic workset correlated well to the data from our software but not to the values suggested by the manufacturers of Jamar. We conclude that our method of predicting hand grip values are superior to that suggested by the manufacturers of dynamometers. The standard reference for hand grip strength provided by the manufacturers is less accurate in predicting the grip strength of our local population.
    Matched MeSH terms: Software
  18. Chong CE, Lim BS, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2006;6(4):341-6.
    PMID: 16922696
    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.
    Matched MeSH terms: Software
  19. Chia SL, Tan WS, Shaari K, Abdul Rahman N, Yusoff K, Satyanarayanajois SD
    Peptides, 2006 Jun;27(6):1217-25.
    PMID: 16377031
    A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
    Matched MeSH terms: Software
  20. Logeswaran R, Eswaran C
    Comput Biol Med, 2007 Aug;37(8):1084-91.
    PMID: 17112496
    Stones in the biliary tract are routinely identified using MRCP (magnetic resonance cholangiopancreatography). The noisy nature of the images, as well as varying intensity, size and location of the stones, defeat most automatic detection algorithms, making computer-aided diagnosis difficult. This paper proposes a multi-stage segment-based scheme for semi-automated detection of choledocholithiasis and cholelithiasis in the MRCP images, producing good performance in tests, differentiating them from "normal" MRCP images. With the high success rate of over 90%, refinement of the scheme could be applicable in the clinical environment as a tool in aiding diagnosis, with possible applications in telemedicine.
    Matched MeSH terms: Software Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links