Displaying publications 61 - 80 of 104 in total

Abstract:
Sort:
  1. Halim N, Kuntom A, Shinde R, Banerjee K
    J AOAC Int, 2020 Sep 01;103(5):1237-1242.
    PMID: 33241391 DOI: 10.1093/jaoacint/qsaa041
    BACKGROUND: Indaziflam (IND) is a herbicide that is used in palm oil plantations for broad spectrum management of weeds. Until now, no validated method has been available for residue estimation of this herbicide in palm oil products.

    OBJECTIVE: In this study, we report a rapid method for the residue analysis of IND and its metabolites, viz., IND-carboxylic acid, diaminotriazine, and triazine indanone in a wide range of palm oil matrices using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    METHOD: The optimized sample preparation workflows included two options: (1) acetonitrile extraction (QuEChERS workflow), followed by freezing at -80°C and (2) acetonitrile extraction, followed by cleanup through a C18 solid phase extraction (SPE) cartridge. The optimized LC runtime was 7 min. All these analytes were estimated by LC-MS/MS multiple reaction monitoring.

    RESULTS: Both sample preparation methods provided similar method performance and acceptable results. The limit of quantification (LOQ) of IND, IND-carboxylic acid, and triazine indanone was 0.001 mg/kg. For diaminotriazine, the LOQ was 0.005 mg/kg. The method accuracy and precision complied with the SANTE/12682/2019 guidelines of analytical quality control.

    CONCLUSIONS: The potentiality of the method lies in a high throughput analysis of IND and its metabolites in a single chromatographic run with high selectivity and sensitivity. Considering its fit-for-purpose performance, the method can be implemented in regulatory testing of IND residues in a wide range of palm oil matrices that are consumed and traded worldwide.

    HIGHLIGHTS: This work has provided a validated method for simultaneous residue analysis of indaziflam and its metabolites in crude palm oil and its derived matrices with high sensitivity, selectivity, and throughput.

    Matched MeSH terms: Solid Phase Extraction
  2. Lau EV, Gan S, Ng HK
    Int J Anal Chem, 2010;2010:398381.
    PMID: 20396670 DOI: 10.1155/2010/398381
    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.
    Matched MeSH terms: Solid Phase Extraction
  3. Lok, C.M., Son, R.
    MyJurnal
    Since the introduction of the molecularly imprinting technology (MIT) in 1970s, it becomes an emerging technology with the potential for wide-ranging applications in food manufacturing, processing, analysis and quality control. It has been successfully applied in food microbiology, removal of undesirable components
    from food matrices, detection of hazardous residues or pollutants and sensors. Molecularly imprinted solid-phase extraction (MISPE) is the most common application so far. The review describes the methods of making the molecularly imprinted polymer systems, the application of the technology in food safety issues and the remaining challenges.
    Matched MeSH terms: Solid Phase Extraction
  4. Zainudin BH, Salleh S, Mohamed R, Yap KC, Muhamad H
    Food Chem, 2015 Apr 1;172:585-95.
    PMID: 25442595 DOI: 10.1016/j.foodchem.2014.09.123
    An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl.
    Matched MeSH terms: Solid Phase Extraction
  5. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
    Matched MeSH terms: Solid Phase Extraction/instrumentation; Solid Phase Extraction/methods*
  6. Muhamad H, Zainudin BH, Abu Bakar NK
    Food Chem, 2012 Oct 15;134(4):2489-96.
    PMID: 23442715 DOI: 10.1016/j.foodchem.2012.04.095
    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia.
    Matched MeSH terms: Solid Phase Extraction/methods*
  7. Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M
    Food Chem, 2019 Apr 25;278:322-332.
    PMID: 30583379 DOI: 10.1016/j.foodchem.2018.10.145
    Poly(β-cyclodextrin functionalized ionic liquid) immobilized magnetic nanoparticles (Fe3O4@βCD-Vinyl-TDI) as sorbent in magnetic µ-SPE was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in rice samples coupled with gas chromatographic-flame ionization detector (GC-FID). The nanocomposite was characterized by various tools and significant parameters that affected the extraction efficiency of PAHs were investigated. The calibration curves were linear for the concentration ranging between 0.1 and 500 μg kg-1 with correlation determinations (R2) from 0.9970 to 0.9982 for all analytes. Detection limits ranged at 0.01-0.18 μg kg-1 in real matrix. The RSD values ranged at 2.95%-5.34% (intra-day) and 4.37%-7.05% (inter-day) precision for six varied days. The sorbents showed satisfactory reproducibility in 2.9% to 9.9% range and acceptable recovery values at 80.4%-112.4% were obtained for the real sample analysis. The optimized method was successfully applied to access content safety of selected PAHs for 24 kinds of commercial rice available in Malaysia.
    Matched MeSH terms: Solid Phase Extraction/methods
  8. Abdulhussein AQ, Jamil AKM, Bakar NKA
    Food Chem, 2021 Oct 15;359:129936.
    PMID: 33957328 DOI: 10.1016/j.foodchem.2021.129936
    In this work, new selective and sensitive dual-template molecularly imprinted polymer nanoparticles (MIPs) were synthesized and characterized. Sorbent MIPs were investigated for simultaneous extraction and clean-up of thiamethoxam and thiacloprid from light and dark honey samples. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry triple-quadrupole (UHPLC-MS/MS) (QQQ) was used to detect and quantify the pesticides. The kinetic model with adsorption kinetics of sorbent was investigated. The optimal adsorption conditions were 80 mg of polymer MIPs, a 30-min extraction time, and a pH of 7. The detection limit (LOD) and the quantification limit (LOQ) varied from 0.045 to 0.070 µg kg-1 and from 0.07 to 0.10 µg kg-1, respectively. The intra-day and inter-day precision (RSD, %) ranged from 1.3 to 2.0% and from 8.2 to 12.0%, respectively. The recovery of thiamethoxam and thiacloprid ranged from 96.8 to 106.5% and 95.3 to 104.4%, respectively, in light and dark honey samples.
    Matched MeSH terms: Solid Phase Extraction/methods
  9. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Solid Phase Extraction/instrumentation; Solid Phase Extraction/methods*
  10. Nasir ANM, Yahaya N, Zain NNM, Lim V, Kamaruzaman S, Saad B, et al.
    Food Chem, 2019 Mar 15;276:458-466.
    PMID: 30409620 DOI: 10.1016/j.foodchem.2018.10.044
    Thiol-functionalized magnetic carbon nanotubes (TMCNTs) were employed as the sorbent in the magnetic micro-solid phase extraction (M-µ-SPE) of sulfonamide antibiotics (SAs) in water, milks and chicken meat products prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The synthesized sorbent was characterized by several spectroscopic techniques. Optimum conditions were: 20 mg of TMCNTs at pH 4, 2 min extraction time, 10% addition of salt and 30 mL of sample volume. Under the optimized TMCNTs-M-µ-SPE and HPLC-DAD conditions, the method showed good linearity in the range of 0.1-500 µg L-1 (r2 ≥ 0.9950), low limits of detection (0.02-1.5 µg L-1), good analytes recovery (80.7-116.2%) and acceptable RSDs (0.3-7.7%, n = 15). The method was applied to tap water (1), milks (15) and commercial chicken meat products (35), SAs were detected in five chicken meat samples (3.0-25.7 µg L-1). The method is critically compared to those reported in the literature.
    Matched MeSH terms: Solid Phase Extraction
  11. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Food Chem, 2018 Jan 15;239:208-216.
    PMID: 28873561 DOI: 10.1016/j.foodchem.2017.06.094
    Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
    Matched MeSH terms: Solid Phase Extraction
  12. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
    Matched MeSH terms: Solid Phase Extraction
  13. Muhammad Yunus F, Alias Y, Yahya N, Mohamad Zain NN, Raoov M
    PMID: 38466777 DOI: 10.1080/19440049.2024.2326426
    Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (μ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 μg L-1-500 μg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.
    Matched MeSH terms: Solid Phase Extraction
  14. Selby-Pham SNB, Siow LF, Bennett LE
    Food Funct, 2020 Jan 29;11(1):907-920.
    PMID: 31942898 DOI: 10.1039/c9fo01149h
    After oil extraction, palm fruit biomass contains abundant water-soluble phytochemicals (PCs) with proven bioactivity in regulating oxidative stress and inflammation (OSI). For optimal bioefficacy following oral consumption, the pharmacokinetic plasma peak (Tmax) should be bio-matched with the onset of OSI, which can be predicted from the Phytochemical Absorption Prediction (PCAP) model and methodology. Predicted absorption and potential for regulation of OSI by measures of total phenolic content, antioxidant capacity and hydrogen peroxide production capacity, were applied to characterise eight extracts from mesocarp fibre and kernel shells of oil-depleted palm fruits. Results indicated post-consumption absorption Tmax ranges of 0.5-12 h and 2-6 h for intake in liquid and solid forms, respectively, and generally high antioxidant activity of the extracts. The research supports that PC extracts of palm fruit biomass have broad potential uses for human health as dietary antioxidants in foods, supplements or functional beverages.
    Matched MeSH terms: Solid Phase Extraction
  15. Khoo LT, Abas F, Abdullah JO, Mohd Tohit ER, Hamid M
    PMID: 24987430 DOI: 10.1155/2014/614273
    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway.
    Matched MeSH terms: Solid Phase Extraction
  16. Azlan NSM, Wee SY, Ismail NAH, Nasir HM, Aris AZ
    Environ Toxicol Chem, 2020 10;39(10):1908-1917.
    PMID: 32621623 DOI: 10.1002/etc.4813
    The organophosphorus pesticides (OPPs) commonly used in agricultural practices can pose a risk of potential exposure to humans via food consumption. We describe an analytical method for solid-phase extraction coupled with high-performance liquid chromatography-diode array detector (SPE-HPLC-DAD) for the detection of OPPs (quinalphos, diazinon, and chlorpyrifos) in rice grains. The isolation of targeted residues was initiated with double extraction before SPE-HPLC-DAD, crucially reducing matrix interferences and detecting a wide range of multiple residues in rice grains. Coefficients of 0.9968 to 0.9991 showed a strong linearity, with limits of detection and quantification ranging from 0.36 to 0.68 µg/kg and from 1.20 to 2.28 µg/kg, respectively. High recoveries (80.4-110.3%) were observed at 3 spiking levels (50, 100, and 200 µg/kg), indicating good accuracy. The relative standard deviations of all residues (0.19-8.66%) validated the method precision. Sample analysis of 10 rice grain types (n = 30) available in the Asian market revealed that quinalphos, diazinon, and chlorpyrifos at concentrations of 1.08, 1.11, and 1.79 µg/kg, respectively, remained far below the maximum residue limits (0.01-0.5 mg/kg). However, regular monitoring is necessary to confirm that multiresidue occurrence remains below permissible limits while controlling pests. Environ Toxicol Chem 2020;39:1908-1917. © 2020 SETAC.
    Matched MeSH terms: Solid Phase Extraction/methods
  17. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Solid Phase Extraction/methods
  18. Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM
    Environ Sci Pollut Res Int, 2016 May;23(10):9759-73.
    PMID: 26850098 DOI: 10.1007/s11356-016-6137-z
    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).
    Matched MeSH terms: Solid Phase Extraction/methods
  19. Al'Abri AM, Mohamad S, Abdul Halim SN, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11410-11426.
    PMID: 30805837 DOI: 10.1007/s11356-019-04467-w
    A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
    Matched MeSH terms: Solid Phase Extraction/methods
  20. Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, et al.
    Environ Res, 2023 Aug 15;231(Pt 2):116102.
    PMID: 37196688 DOI: 10.1016/j.envres.2023.116102
    Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
    Matched MeSH terms: Solid Phase Extraction/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links