Displaying publications 61 - 80 of 391 in total

Abstract:
Sort:
  1. Chan SH, Lee W, Asmawi MZ, Tan SC
    PMID: 27232053 DOI: 10.1016/j.jchromb.2016.05.015
    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%.
    Matched MeSH terms: Swine
  2. Chanchaidechachai T, Saatkamp H, de Jong M, Inchaisri C, Hogeveen H, Premashthira S, et al.
    Transbound Emerg Dis, 2022 Nov;69(6):3823-3836.
    PMID: 36321258 DOI: 10.1111/tbed.14754
    Foot-and-mouth disease (FMD) is one of the most important animal diseases hindering livestock production in Thailand. In this study, a temporal and spatial analysis at the subdistrict level was performed on FMD outbreak reports in Thailand from 2011 to 2018. Risk factors associated with FMD outbreaks were furthermore investigated using generalized estimating equations. The results showed that the incidence of FMD outbreaks was the highest in 2016 and was affected by season, with a peak in FMD outbreaks occurring in the rainy-winter season, during October to December. FMD outbreaks were mostly distributed in small clusters within a few subdistricts. Some high-risk areas with repeated outbreaks were detected in the central regions. Risk factors, including the increase of subdistrict's size of the dairy population, beef population or pig population, the low percentage of forest area, subdistricts in the provinces adjacent to Malaysia, the presence of a livestock market and the occurrence of an FMD outbreak in a neighbouring subdistrict in the previous month significantly increased the odds of having an FMD outbreak. The increase in proximity to the nearest subdistrict with an FMD outbreak in the previous month decreased the odds of having FMD outbreaks. This study helped to identify high-risk areas and periods of FMD outbreaks in Thailand. Together with the identified risk factors, its results can be used to optimize the FMD control programme in Thailand and in other countries having a similar livestock industry and FMD situation.
    Matched MeSH terms: Swine
  3. Chandrawathani P, Nurulaini R, Zanin CM, Premaalatha B, Adnan M, Jamnah O, et al.
    Trop Biomed, 2008 Dec;25(3):257-8.
    PMID: 19287367
    Antibodies to the protozoan parasite, Toxoplasma gondii were assayed in sera of 200 goats, 100 pigs, 126 cattle from various states of Malaysia, and 135 dogs and 55 cats around Ipoh region using an indirect fluorescence antibody test (IFAT, cut-off titer 1:200); antibodies were found in 35.5% of goats, 14.5% cats, 9.6% dogs, 7.9% local cattle and 4% yellow cattle but not in pigs. Results indicate that infection is most prevalent in goats.
    Matched MeSH terms: Swine/parasitology*
  4. Chandrika, M., Maimunah, M., Zainon, M.N., Son, R.
    MyJurnal
    Legislation concerning the safety assessment and labelling of foodstuffs has been implemented in many countries. Consequential to a number of cases of food adulteration reported globally, a fast and reliable detection method for the food traceability is required in ensuring effective implementation of food legislation in a country. In this study, PCR-RFLP technique based on cyt b gene has been tested for its suitability for these purposes. This method combines the use of a pair of universal primer that amplifies a 359 bp fragment on the cyt b gene from meat muscle DNA and restriction enzyme analysis. Analysis of experimental beef frankfurter, minced beef, pork frankfurter and pork cocktail samples demonstrated the suitability of the assay for the detection of the beef (Bos taurus) and pork (Sus scrofa), but not applicable for some processed food, particularly detection of mackerel (Rasterelliger brachysoma), sardine (Saedinella Fimbriata) and tuna (Thunnus tonggol) origin in canned food. Commercial frauds through species mislabelling or misdescribed were not detected. The assay is demonstrated applicable for routine analysis of meat traceability of foodstuffs and legislation purposes, if sufficient availability of detectable mtDNA in the foodstuffs is ensured.
    Matched MeSH terms: Swine
  5. Chang LY, Ali AR, Hassan SS, AbuBakar S
    J Med Virol, 2006 Aug;78(8):1105-12.
    PMID: 16789019
    Nipah virus infection of porcine stable kidney cells (PS), human neuronal cells (SK-N-MC), human lung fibroblasts cells (MRC-5), and human monocytes (THP-1) were examined. Rapid progression of cytopathic effects (CPE) and cell death were noted in PS cell cultures treated with Nipah virus, followed by MRC-5, SK-N-MC, and THP-1 cell cultures, in descending order of rapidity. Significant increase in the intracellular Nipah virus RNA occurred beginning at 24 hr PI in all the infected cells. Whereas, the extracellular release of Nipah virus RNA increased significantly beginning at 48 and 72 hr PI for the infected MRC-5 cells and PS cells, respectively. No significant release of extracellular Nipah virus RNA was detected from the Nipah virus-infected SK-N-MC and THP-1 cells. At its peak, approximately 6.6 log PFU/microl of extracellular Nipah virus RNA was released from the Nipah virus-infected PS cells, with at least a 100-fold less virus RNA was recorded in the Nipah virus-infected SK-N-MC and THP-1. Approximately 15.2% (+/-0.1%) of the released virus from the infected PS cell cultures was infectious in contrast to approximately 5.5% (+/-0.7%) from the infected SK-N-MC cells. The findings suggest that there are no differences in the capacity to support Nipah virus replication between pigs and humans in fully susceptible PS and MRC-5 cells. However, there are differences between these cells and human neuronal cells and monocytes in the ability to support Nipah virus replication and virus release.
    Matched MeSH terms: Swine/virology*
  6. Chang SS, Tong QJ, Beh ZY, Quek KH, Ang BH
    Korean J Anesthesiol, 2018 Aug;71(4):289-295.
    PMID: 29843506 DOI: 10.4097/kja.d.18.00025
    BACKGROUND: The ideal emergency cricothyroidotomy technique remains a topic of ongoing debate. This study aimed to compare the cannula-to-Melker technique with the scalpel-bougie technique and determine whether yearly training in cricothyroidotomy techniques is sufficient for skill retention.

    METHODS: We conducted an observational crossover bench study to compare the cannula-to-Melker with the scalpel-bougie technique in a porcine tracheal model. Twenty-eight anesthetists participated. The primary outcome was time taken for device insertion. Secondary outcomes were first-pass success rate, incidence of tracheal trauma, and technique preference. We also compared the data on outcome measures with the data obtained in a similar workshop a year ago.

    RESULTS: The scalpel-bougie technique was significantly faster than the cannula-to-Melker technique for cricothyroidotomy (median time of 45.2 s vs. 101.3 s; P = 0.001). Both techniques had 100% success rate within two attempts; there were no significant differences in the first-pass success rates and incidence of tracheal wall trauma (P > 0.999 and P = 0.727, respectively) between them. The relative risks of inflicting tracheal wall trauma after a failed cricothyroidotomy attempt were 6.9 (95% CI 1.5-31.1), 2.3 (95% CI 0.3-20.7) and 3.0 (95% CI 0.3-25.9) for the scalpel-bougie, cannula-cricothyroidotomy, and Melker-Seldinger airway, respectively. The insertion time and incidence of tracheal wall trauma were lower when the present data were compared with data from a similar workshop conducted the previous year.

    CONCLUSIONS: This study supports the use of a scalpel-bougie technique for cricothyroidotomy by anesthetists and advocates a yearly training program for skill retention.

    Matched MeSH terms: Swine
  7. Chattu VK, Kumar R, Kumary S, Kajal F, David JK
    J Family Med Prim Care, 2018 8 10;7(2):275-283.
    PMID: 30090764 DOI: 10.4103/jfmpc.jfmpc_137_18
    Nipah virus (NiV) encephalitis first reported in "Sungai Nipah" in Malaysia in 1999 has emerged as a global public health threat in the Southeast Asia region. From 1998 to 2018, more than 630 cases of NiV human infections were reported. NiV is transmitted by zoonotic (from bats to humans, or from bats to pigs, and then to humans) as well as human-to-human routes. Deforestation and urbanization of some areas have contributed to greater overlap between human and bat habitats resulting in NiV outbreaks. Common symptoms of NiV infection in humans are similar to that of influenza such as fever and muscle pain and in some cases, the inflammation of the brain occurs leading to encephalitis. The recent epidemic in May 2018 in Kerala for the first time has killed over 17 people in 7 days with high case fatality and highlighted the importance of One Health approach. The diagnosis is often not suspected at the time of presentation and creates challenges in outbreak detection, timely control measures, and outbreak response activities. Currently, there are no drugs or vaccines specific for NiV infection although this is a priority disease on the World Health Organization's agenda. Antivirals (Ribavirin, HR2-based fusion inhibitor), biologicals (convalescent plasma, monoclonal antibodies), immunomodulators, and intensive supportive care are the mainstay to treat severe respiratory and neurologic complications. There is a great need for strengthening animal health surveillance system, using a One Health approach, to detect new cases and provide early warning for veterinary and human public health authorities.
    Matched MeSH terms: Swine
  8. Che' Amat A, González-Barrio D, Ortiz JA, Díez-Delgado I, Boadella M, Barasona JA, et al.
    Prev Vet Med, 2015 Sep 1;121(1-2):93-8.
    PMID: 26051843 DOI: 10.1016/j.prevetmed.2015.05.011
    Animal tuberculosis (TB) caused by infection with Mycobacterium bovis and closely related members of the M. tuberculosis complex (MTC), is often reported in the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against MTC antigens are valuable tools for TB monitoring and control in suids. However, only limited knowledge exists on serology test performance in 2-6 month-old piglets. In this age-class, recent infections might cause lower antibody levels and lower test sensitivity. We examined 126 wild boar piglets from a TB-endemic site using 6 antibody detection tests in order to assess test performance. Bacterial culture (n=53) yielded a M. bovis infection prevalence of 33.9%, while serum antibody prevalence estimated by different tests ranged from 19% to 38%, reaching sensitivities between 15.4% and 46.2% for plate ELISAs and between 61.5% and 69.2% for rapid immunochromatographic tests based on dual path platform (DPP) technology. The Cohen kappa coefficient of agreement between DPP WTB (Wildlife TB) assay and culture results was moderate (0.45) and all other serological tests used had poor to fair agreements. This survey revealed the ability of several tests for detecting serum antibodies against the MTC antigens in 2-6 month-old naturally infected wild boar piglets. The best performance was demonstrated for DPP tests. The results confirmed our initial hypothesis of a lower sensitivity of serology for detecting M. bovis-infected piglets, as compared to older wild boar. Certain tests, notably the rapid animal-side tests, can contribute to TB control strategies by enabling the setup of test and cull schemes or improving pre-movement testing. However, sub-optimal test performance in piglets as compared to that in older wild boar should be taken into account.
    Matched MeSH terms: Swine; Swine Diseases/diagnosis*; Swine Diseases/microbiology
  9. Che'Amat A, Armenteros JA, González-Barrio D, Lima JF, Díez-Delgado I, Barasona JA, et al.
    Prev Vet Med, 2016 Dec 01;135:132-135.
    PMID: 27843020 DOI: 10.1016/j.prevetmed.2016.11.002
    We assessed the suitability of targeted removal as a means for tuberculosis (TB) control on an intensely managed Eurasian wild boar (Sus scrofa) hunting estate. The 60km(2) large study area included one capture (treatment) site, one control site, and one release site. Each site was fenced. In the summers of 2012, 2013 and 2014, 929 wild boar were live-captured on the treatment site. All wild boar were micro-chipped and tested using an animal side lateral flow test immediately after capture in order to detect antibodies to the Mycobacterium tuberculosis complex (MTC). The wild boar were released according to their TB status: Seropositive individuals onto the release site (hunted after summer), and seronegative individuals back onto the treatment site. The annual summer seroprevalence of antibodies to the MTC declined significantly in live-captured wild boar piglets from the treatment site, from 44% in 2012 to 27% in 2013 (a reduction of 39%). However, no significant further reduction was recorded in 2014, during the third capture season. Fall-winter MTC infection prevalence was calculated on the basis of the culture results obtained for hunter-harvested wild boar. No significant changes between hunting seasons were recorded on either the treatment site or the control site, and prevalence trends over time were similar on both sites. The fall-winter MTC infection prevalence on the release site increased significantly from 40% in 2011-2012 to 64% in 2012-2013 and 2013-2014 (60% increase). Recaptures indicated a persistently high infection pressure. This experiment, the first attempt to control TB in wild boar through targeted removal, failed to reduce TB prevalence when compared to the control site. However, it generated valuable knowledge on infection pressure and on the consequences of translocating TB-infected wild boar.
    Matched MeSH terms: Swine; Swine Diseases/microbiology; Swine Diseases/epidemiology; Swine Diseases/prevention & control*
  10. Chee GN, Sumiani Yusoff
    Sains Malaysiana, 2015;44:187-192.
    In Malaysia, the greenhouse gases (GHGs) emissions reduction via composting of source-separated organic waste (SOW) in municipal solid waste (MSW) has not been assessed. Assessment of GHG emissions reduction via composting of SOW is important as environmental impacts from waste management are waste-specific and local-specific. The study presents the case study for potential carbon reduction via composting of SOW in University of Malaya (UM). In this study, a series of calculations were used to evaluate the GHG emission of different SOW management scenarios. The calculations based on IPCC calculation methods (AM0025) include GHGs emissions from landfilling, fuel consumption in transportation and SOW composting activity. The methods were applied to assess the GHG emissions from five alternative SOW management scenarios in UM. From the baseline scenario (S0), a total of 1,636.18 tCO2e was generated. In conjunction with target of 22% recycling rate, as shown in S1, 14% reduction in potential GHG emission can be achieved. The carbon reduction can be further enhanced by increasing the SOW composting capacity. The net GHG emission for S1, S2, S3 and S4 were 1,399.52, 1,161.29, 857.70 and 1,060.48 tCO2e, respectively. In general, waste diversion for composting proved a significant net GHG emission reduction as shown in S3 (47%), S4 (35%) and S2 (29%). Despite the emission due to direct on-site activity, the significant reduction in methane generation at landfill has reduced the net GHG emission. The emission source of each scenario was studied and analysed.
    Matched MeSH terms: Swine
  11. Chen CD, Low VL, Lau KW, Lee HL, Nazni WA, Heo CC, et al.
    J Am Mosq Control Assoc, 2013 Sep;29(3):243-50.
    PMID: 24199499
    The present study aims to investigate the susceptibility status of Aedes albopictus, Culex quinquefasciatus, and Cx. vishnui collected from a pig farm in Tanjung Sepat, Selangor, toward 11 insecticides representing the classes of organochlorines, carbamates, organophosphates, and pyrethroids. The results of a World Health Organization adult mosquito bioassay revealed that Ae. albopictus, Cx. quinquefasciatus, and Cx. vishnui exhibited different susceptibility toward various insecticides. Overall, pyrethroids were able to induce rapid knockdown for all test mosquito species. The pyrethroids lambdacyhalothrin and etofenprox were able to cause high mortality (> 80%) of all 3 species. The findings of the present study will benefit local authorities in selecting appropriate dosage of insecticides to be used in mosquito control in this area.
    Matched MeSH terms: Swine
  12. Cheng P, Wang Y, Liang J, Wu Y, Wright A, Liao X
    Front Microbiol, 2018;9:1342.
    PMID: 29988353 DOI: 10.3389/fmicb.2018.01342
    There is growing interest in the use of unconventional feed ingredients containing higher dietary fiber for pig production due to increasing prices of cereal grains and the potential health benefits of dietary fiber on host animals. This study aimed to gain insight into the community-wide microbiome population between the Chinese native Lantang pigs and the commercial Duroc pigs to uncover the microbiological mechanisms for the degradation capacity of fiber in pigs. Utilizing the metagenomics approach, we compared the phylogeny and functional capacity of the fecal microbiome from approximately 150-day-old female Lantang and Duroc pigs fed a similar diet. The structure of the fecal microbial community from the two pig breeds was different at the genus level; the number of genes associated with fiber degradation was higher in Lantang pigs. Further analysis and prediction of their functions from the fecal microbiomes of the two pig breeds revealed that the degradation capacities of fiber, branched chain fatty acids, and oligosaccharides were higher in Lantang pigs. The ability of lignocellulose bonding modules and the transport capacities of xylose, L-arabinose, ribose and methyl galactose were also higher in Lantang pigs. Similarly, the metabolic capacities of xylose, ribose, and fucose and the potential effectiveness of the tricarboxylic acid cycle (TCA) and gene abundance in the hydrogen sink pathway were higher in the fecal microbiome from Lantang pigs. Lantang pigs have a higher capacity to utilize dietary fiber than Duroc pigs, and the differences in the capability to utilize dietary fiber between the indigenous and commercial pigs could be differences in the composition and biological function of the gut microbiota.
    Matched MeSH terms: Swine
  13. Cheng PH, Liang JB, Wu YB, Wang Y, Tufarelli V, Laudadio V, et al.
    Anim Sci J, 2017 Aug;88(8):1141-1148.
    PMID: 28026141 DOI: 10.1111/asj.12723
    Native Lantang and commercial Duroc pigs were used as animal models to evaluate the differences existing in dietary fiber utilization ability between breeds. Animals were fed the same diet from weaning (4 weeks) to 4 months of age. Neutral detergent fiber (NDF) from wheat bran (as substrate) and fecal samples from the two breeds (as inoculum) were used in an in vitro gas production trial. Results showed that cumulative and maximum gas productions were higher in inocula from Lantang than those from the Duroc breed (P 
    Matched MeSH terms: Swine/metabolism*; Swine/microbiology*
  14. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, et al.
    J Infect Dis, 2000 May;181(5):1760-3.
    PMID: 10823780
    During 10-19 March 1999, 11 workers in 1 of 2 Singaporean abattoirs developed Nipah-virus associated encephalitis or pneumonia, resulting in 1 fatality. A case-control study was conducted to determine occupational risk factors for infection. Case patients were abattoir A workers who had anti-Nipah IgM antibodies; control subjects were randomly selected abattoir A workers who tested negative for anti-Nipah IgM. All 13 case patients versus 26 (63%) of 41 control subjects reported contact with live pigs (P=.01). Swine importation from Malaysian states concurrently experiencing a Nipah virus outbreak was banned on 3 March 1999; on 19 March 1999, importation of Malaysian pigs was banned, and abattoirs were closed. No unusual illnesses among pigs processed during February-March were reported. Contact with live pigs appeared to be the most important risk factor for human Nipah virus infection. Direct contact with live, potentially infected pigs should be minimized to prevent transmission of this potentially fatal zoonosis to humans.
    Matched MeSH terms: Swine; Swine Diseases/transmission; Swine Diseases/virology
  15. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Swine
  16. Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, et al.
    PLoS Negl Trop Dis, 2014 Nov;8(11):e3302.
    PMID: 25412358 DOI: 10.1371/journal.pntd.0003302
    BACKGROUND: Nipah virus (NiV) is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia. In Bangladesh, NiV has caused recognized human outbreaks since 2001 and three outbreak investigations identified an epidemiological association between close contact with sick or dead animals and human illness.

    METHODOLOGY: We examined cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas. We also tested pig sera collected under another study focused on Japanese encephalitis.

    PRINCIPAL FINDINGS: We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay; however, these antibodies did not neutralize NiV. Cattle and goats with NiVsG antibodies were more likely to have a history of feeding on fruits partially eaten by bats or birds (PR=3.1, 95% CI 1.6-5.7) and drinking palmyra palm juice (PR=3.9, 95% CI 1.5-10.2).

    CONCLUSIONS: This difference in test results may be due to the exposure of animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance.

    Matched MeSH terms: Swine; Swine Diseases/blood; Swine Diseases/epidemiology*; Swine Diseases/virology
  17. Chowdhury SR, Mh Busra MF, Lokanathan Y, Ng MH, Law JX, Cletus UC, et al.
    Adv Exp Med Biol, 2018 10 26;1077:389-414.
    PMID: 30357700 DOI: 10.1007/978-981-13-0947-2_21
    Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.
    Matched MeSH terms: Swine
  18. Chua KB
    Malays J Pathol, 2010 Dec;32(2):75-80.
    PMID: 21329177 MyJurnal
    An outbreak of acute febrile encephalitis affecting pig-farm workers and owners was recognized in peninsular Malaysia as early as September 1998. The outbreak was initially thought to be due to Japanese encephalitis (JE) virus and thus very intensive prevention, control and communication strategies directed at JE virus were undertaken by the Ministry of Health and Ministry of Agriculture of Malaysia. There was an immediate change in the prevention, control and communication strategies with focus and strategies on infected pigs as the source of infections for humans and other animals following the discovery of Nipah virus. Information and understanding the risks of Nipah virus infections and modes of transmission strengthened the directions of prevention, control and communication strategies. A number of epidemiological surveillances and field investigations which were broadly divided into 3 groups covering human health sector, animal health sector and reservoir hosts were carried out as forms of risk assessment to determine and assess the factors and degree of risk of infections by the virus. Data showed that there was significant association between Nipah virus infection and performing activities involving close contact with pigs, such as processing of piglets, administering injection or medication to pigs, assisting in the birth of piglets, assisting in pig breeding, and handling of dead pigs in the affected farms. A complex process of anthropogenic driven deforestation, climatic changes brought on by El Niño-related drought, forest fire and severe haze, and ecological factors of mixed agro-pig farming practices and design of pig-sties led to the spillovers of the virus from its wildlife reservoir into pig population.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/prevention & control*; Swine Diseases/virology
  19. Chua KB
    Malays J Pathol, 2010 Dec;32(2):69-73.
    PMID: 21329176 MyJurnal
    The outbreak of Nipah virus, affecting pigs and pig-farm workers, was first noted in September 1998 in the north-western part of peninsular Malaysia. By March 1999, the outbreak had spread to other pig-farming areas of the country, inclusive of the neighbouring country, Singapore. A total of 283 human cases of viral encephalitis with 109 deaths were recorded in Malaysia from 29 September 1998 to December 1999. During the outbreak period, a number of surveillances under three broad groups; Surveillance in Human Health Sector, Surveillance in Animal Health Sector, and Surveillance for the Reservoir Hosts, were carried out to determine the prevalence, risk of virus infections and transmission in human and swine populations as well as the source and reservoir hosts of Nipah virus. Surveillance data showed that the virus spread rapidly among pigs within infected farms and transmission was attributed to direct contact with infective excretions and secretions. The spread of the virus among pig farms within and between states of peninsular Malaysia was due to movement of pigs. The transmission of the virus to humans was through close contact with infected pigs. Human to human transmission was considered a rare event though the Nipah virus could be isolated from saliva, urine, nasal and pharyngeal secretions of patients. Field investigations identified fruitbats of the Pteropid species as the natural reservoir hosts of the viruses. The outbreak was effectively brought under control following the discovery of the virus and institution of correct control measures through a combined effort of multi-ministerial and multidisciplinary teams working in close co-operation and collaboration with other international agencies.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/transmission; Swine Diseases/virology
  20. Chua KB, Chua BH, Wang CW
    Malays J Pathol, 2002 Jun;24(1):15-21.
    PMID: 16329551
    In late 1998, a novel paramyxovirus named Nipah virus, emerged in Malaysia, causing fatal disease in domestic pigs and humans with substantial economic loss to the local pig industry. Pteropid fruitbats have since been identified as a natural reservoir host. Over the last two decades, the forest habitat of these bats in Southeast Asia has been substantially reduced by deforestation for pulpwood and industrial plantation. In 1997/1998, slash-and-burn deforestation resulted in the formation of a severe haze that blanketed much of Southeast Asia in the months directly preceding the Nipah virus disease outbreak. This was exacerbated by a drought driven by the severe 1997-1998 El Niño Southern Oscillation (ENSO) event. We present data suggesting that this series of events led to a reduction in the availability of flowering and fruiting forest trees for foraging by fruitbats and culminated in unprecedented encroachment of fruitbats into cultivated fruit orchards in 1997/1998. These anthropogenic events, coupled with the location of piggeries in orchards and the design of pigsties allowed transmission of a novel paramyxovirus from its reservoir host to the domestic pig and ultimately to the human population.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/transmission; Swine Diseases/virology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links