METHODS: The reference electrodiagnosis was obtained in 53 demyelinating and 45 axonal GBS patients on the basis of two serial studies and results of anti-ganglioside antibodies assay. We retrospectively employed sparse linear discriminant analysis (LDA), two existing electrodiagnostic criteria sets (Hadden et al., 1998; Rajabally et al., 2015) and one we propose that additionally evaluates duration of motor responses, sural sparing pattern and defines reversible conduction failure (RCF) in motor and sensory nerves at second study.
RESULTS: At first study the misclassification error rates, compared to reference diagnoses, were: 15.3% for sparse LDA, 30% for our criteria, 45% for Rajabally's and 48% for Hadden's. Sparse LDA identified seven most powerful electrophysiological variables differentiating demyelinating and axonal subtypes and assigned to each patient the diagnostic probability of belonging to either subtype. At second study 46.6% of axonal GBS patients showed RCF in two motor and 8.8% in two sensory nerves.
CONCLUSIONS: Based on a single study, sparse LDA showed the highest diagnostic accuracy. RCF is present in a considerable percentage of axonal patients.
SIGNIFICANCE: Sparse LDA, a supervised statistical method of classification, should be introduced in the electrodiagnostic practice.
AIM: The aim of the present study was to determine sex of human mandible from morphology, morphometric measurements as well as discriminant function analysis from the CT scan.
MATERIALS AND METHODS: The present retrospective study comprised 79 subjects (48 males, 31 females), with age group between 18 and 74 years, and were obtained from the post mortem computed tomography data in the Hospital Kuala Lumpur. The parameters were divided into three morphologic and nine morphometric parameters, which were measured by using Osirix MD Software 3D Volume Rendering.
RESULTS: The Chi-square test showed that men were significantly association with square-shaped chin (92%), prominent muscle marking (85%) and everted gonial glare, whereas women had pointed chin (84%), less prominent muscle marking (90%) and inverted gonial glare (80%). All parameter measurements showed significantly greater values in males than in females by independent t-test (p< 0.01). By discriminant analysis, the classification accuracy was 78.5%, the sensitivity was 79.2% and the specificity was 77.4%. The discriminant function equation was formulated based on bigonial breath and condylar height, which were the best predictors.
CONCLUSION: In conclusion, the mandible could be distinguished according to the sex. The results of the study can be used for identification of damaged and/or unknown mandible in the Malaysian population.
METHOD: This study investigates three-dimensional (3D) soft-tissue craniofacial variation, with relation to ethnicity, sex and age variables in British and Irish white Europeans. This utilizes a geometric morphometric approach on a subsampled dataset comprising 292 scans, taken from a Liverpool-York Head Model database. Shape variation and analysis of each variable are tested using 20 anchor anatomical landmarks and 480 sliding semi-landmarks.
RESULTS: Significant ethnicity, sex, and age differences are observed for measurement covering major aspects of the craniofacial shape. The ethnicity shows subtle significant differences compared to sex and age; even though it presents the lowest classification accuracy. The magnitude of dimorphism in sex is revealed in the facial, nasal and crania measurement. Significant shape differences are also seen at each age group, with some distinct dimorphic features present in the age groups.
CONCLUSIONS: The patterns of shape variation show that white British individuals have a more rounded head shape, whereas white Irish individuals have a narrower head shape. White British persons also demonstrate higher classification accuracy. Regarding sex patterns, males are relatively larger than females, especially in the mouth and nasal regions. Females presented with higher classification accuracy than males. The differences in the chin, mouth, nose, crania, and forehead emerge from different growth rates between the groups. Classification accuracy is best for children and senior adult age groups.