Displaying publications 61 - 80 of 257 in total

Abstract:
Sort:
  1. Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T
    Panminerva Med, 2018 Dec;60(4):237-238.
    PMID: 30563307 DOI: 10.23736/S0031-0808.18.03435-3
    Matched MeSH terms: Emulsions
  2. Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AGA
    J Pharm Sci, 2017 01;106(1):377-384.
    PMID: 27522920 DOI: 10.1016/j.xphs.2016.06.028
    Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.
    Matched MeSH terms: Emulsions/chemistry*
  3. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
    Matched MeSH terms: Emulsions/chemistry
  4. Abd Jalil SN, Wang DK, Yacou C, Motuzas J, Smart S, Diniz da Costa JC
    Materials (Basel), 2016 Nov 18;9(11).
    PMID: 28774057 DOI: 10.3390/ma9110938
    This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti-O-Ti nanoparticles with inter-particle voids, which increased as TiO₂ nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.
    Matched MeSH terms: Emulsions
  5. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
    Matched MeSH terms: Emulsions
  6. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al.
    Int J Biol Macromol, 2021 Oct 31;189:744-757.
    PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170
    The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
    Matched MeSH terms: Emulsions/chemistry*
  7. Sagisaka M, Ono S, James C, Yoshizawa A, Mohamed A, Guittard F, et al.
    Colloids Surf B Biointerfaces, 2018 Aug 01;168:201-210.
    PMID: 29276082 DOI: 10.1016/j.colsurfb.2017.12.012
    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
    Matched MeSH terms: Emulsions/chemistry
  8. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Emulsions/pharmacology; Emulsions/therapeutic use; Emulsions/chemistry*
  9. Amiza, M.A., Ow, Y.W., Faazaz, A.L.
    MyJurnal
    The physicochemical properties of silver catfish frame hydrolysate powder at three different degree of hydrolysis, DH43%, DH 55% and DH 68% were studied. The hydrolysates powder were obtained by hydrolysis using Alcalase®, centrifugation and spray drying of the supernatant. The study found that preparation of these hydrolysates affected the protein, ash and fat content as well as amino acid composition. As for essential amino acids, their values were generally considered as adequate as compared to the suggested essential amino acids profile of FAO/WHO. The results showed that SFHs were rich in lysine and glutamate. Hydrolysate at DH 68% exhibited better peptide solubility and water holding capacity. As degree of hydrolysis increased, emulsifying capacity and foaming capacity of the hydrolysate decreased. It was also found that the lightness in hydrolysate powder decreased with increase in degree of hydrolysis. This study shows that silver catfish frame hydrolysate has good solubility, good foaming properties and light colour profile, thus having high potential as food ingredient.
    Matched MeSH terms: Emulsions
  10. Amiza, M.A., Kong, Y.L., Faazaz, A.L.
    MyJurnal
    The effect of degree of hydrolysis (DH) on the physicochemical properties of cobia frame hydrolysate was determined. Three levels of degree of hydrolysis of cobia frame hydrolysate were studied, which were 53%, 71% and 96%. After enzymatic hydrolysis using Alcalase®, the samples were spray-dried. Cobia hydrolysate powder samples were analyzed for their proximate analysis and physicochemical properties. The proximate analysis showed significant differences in fat and ash content only. DH96 hydrolysate showed desirable essential amino acid profile for human requirement except for methionine and isoleucine. The study found that cobia frame hydrolysate had good colour, emulsifying capacity and excellent foaming properties. However, there were no significant differences in water-holding capacity, oil-holding capacity and peptide solubility among the hydrolysate samples. This study suggested that cobia frame hydrolysate is a potential ingredient and foaming agent for food industry.
    Matched MeSH terms: Emulsions
  11. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
    Matched MeSH terms: Emulsions
  12. Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA
    Sci Rep, 2023 Dec 20;13(1):22730.
    PMID: 38123572 DOI: 10.1038/s41598-023-49328-2
    Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.
    Matched MeSH terms: Emulsions/pharmacology
  13. Barambu NU, Bilad MR, Bustam MA, Huda N, Jaafar J, Narkkun T, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137888 DOI: 10.3390/polym12112519
    The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m-2·h-1·bar-1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane.
    Matched MeSH terms: Emulsions
  14. Nawi NIM, Ong Amat S, Bilad MR, Nordin NAHM, Shamsuddin N, Prayogi S, et al.
    Polymers (Basel), 2021 Mar 22;13(6).
    PMID: 33810126 DOI: 10.3390/polym13060976
    Wastewater containing oil/water emulsion has a serious ecological impact and threatens human health. The impact worsens as its volume increases. Oil/water emulsion needs to be treated before it is discharged or reused again for processing. A membrane-based process is considered attractive in effectively treating oil/water emulsion, but progress has been dampened by the membrane fouling issue. The objective of this study is to develop polyvinylidene fluoride (PVDF) membranes customized for oil/water emulsion separation by incorporating assembly of tannic acid (TA) and polyvinylpyrrolidone (PVP) in the polymer matrix. The results show that the assembly of TA/PVP complexation was achieved as observed from the change in colour during the phase inversion and as also proven from the characterization analyses. Incorporation of the TA/PVP assembly leads to enhanced surface hydrophilicity by lowering the contact angle from 82° to 47°. In situ assembly of the TA/PVP complex also leads to enhanced clean water permeability by a factor of four as a result of enhanced mean flow pore size from 0.2 to 0.9 µm. Owing to enhanced surface chemistry and structural advantages, the optimum hydrophilic PVDF/TA/PVP membrane poses permeability of 540.18 L/(m2 h bar) for oil/water emulsion filtration, three times higher than the pristine PVDF membrane used as the reference.
    Matched MeSH terms: Emulsions
  15. Kumar S, Foroozesh J
    Carbohydr Polym, 2021 Apr 01;257:117619.
    PMID: 33541647 DOI: 10.1016/j.carbpol.2021.117619
    Chitin biopolymer has received significant attention recently by many industries as a green technology. Nanotechnology has been used to make chitin nanocrystals (ChiNCs) that are rod-shaped natural nanomaterials with nanoscale size. Owing to the unique features such as biodegradability, biocompatibility, renewability, rod-shape, and excellent surface and interfacial, physiochemical, and thermo-mechanical properties; ChiNCs have been green and attractive products with wide applications specifically in medical and pharmaceutical, food and packaging, cosmetic, electrical, and electronic, and also in the oil and gas industry. This review aims to give a comprehensive and applied insight into ChiNCs technology. It starts with reviewing different sources of chitin and their extraction methods followed by the characterization of ChiNCs. Furthermore, a detailed investigation into various complex fluids (dispersions, emulsions, foams, and gels) stabilized by ChiNCs and their characterisation have been thoroughly deliberated. Finally, the current status including ground-breaking applications, untapped investigations, and future prospective have been presented.
    Matched MeSH terms: Emulsions
  16. Tan HF, Gan CY
    Int J Biol Macromol, 2016 Apr;85:487-96.
    PMID: 26778156 DOI: 10.1016/j.ijbiomac.2016.01.023
    Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries.
    Matched MeSH terms: Emulsions
  17. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al.
    Curr Pharm Biotechnol, 2018;19(4):276-292.
    PMID: 29874994 DOI: 10.2174/1389201019666180605125234
    BACKGROUND: Targeting chemotherapeutic agents to the tumor tissues and achieving accumulation with ideal release behavior for desired therapy requires an ideal treatment strategy to inhibit division of rapid growing cancerous cells and as an outcome improve patient's quality of life. However, majority of the available anticancer therapies are well known for their systemic toxicities and multidrug resistance.

    METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.

    RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.

    Matched MeSH terms: Emulsions
  18. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 Sep 15;13(36):42461-42472.
    PMID: 34460218 DOI: 10.1021/acsami.1c11533
    Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
    Matched MeSH terms: Emulsions/chemistry*
  19. Pushpamalar J, Sathasivam T, Gugler MC
    Methods Mol Biol, 2021;2211:171-182.
    PMID: 33336277 DOI: 10.1007/978-1-0716-0943-9_12
    Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.
    Matched MeSH terms: Emulsions
  20. Rehan F, Ahemad N, Gupta M
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:280-292.
    PMID: 30981063 DOI: 10.1016/j.colsurfb.2019.03.051
    Casein nanomicelles, a major fraction of milk protein, are emerging as a novel drug delivery system owing to their various structural and functional properties. Casein is further divided into α-, β- and κ-casein, and to date various models have been proposed to describe casein structure, but still no definite structure presenting a detailed assembly of the casein micelle has been found. Thus far, the submicellar model and Horne and Holt model are the most accepted models. This article presents a detailed review of casein micelles and their fractions, and the physicochemical properties that account for their numerous applications in nutraceutics, pharmaceutics and cosmetics. Due to their nanosize and self-assembling nature, casein nanomicelles are considered as excellent delivery carriers to provide better bioavailability and stability of various compounds such as vitamins, oils, polyphenols, fattyacids and minerals. Their amphiphilic nature also provides a great opportunity to deliver hydrophobic bioactives in various drug delivery systems such as nanoparticles, nanomicelles, nanogels and nanoemulsions to improve drug binding and targeting.
    Matched MeSH terms: Emulsions/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links