Displaying publications 61 - 80 of 188 in total

Abstract:
Sort:
  1. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
    Matched MeSH terms: Genome-Wide Association Study
  2. Shen X, Howard DM, Adams MJ, Hill WD, Clarke TK, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, et al.
    Nat Commun, 2020 05 08;11(1):2301.
    PMID: 32385265 DOI: 10.1038/s41467-020-16022-0
    Depression is a leading cause of worldwide disability but there remains considerable uncertainty regarding its neural and behavioural associations. Here, using non-overlapping Psychiatric Genomics Consortium (PGC) datasets as a reference, we estimate polygenic risk scores for depression (depression-PRS) in a discovery (N = 10,674) and replication (N = 11,214) imaging sample from UK Biobank. We report 77 traits that are significantly associated with depression-PRS, in both discovery and replication analyses. Mendelian Randomisation analysis supports a potential causal effect of liability to depression on brain white matter microstructure (β: 0.125 to 0.868, pFDR 
    Matched MeSH terms: Genome-Wide Association Study
  3. Ho WK, Tan MM, Mavaddat N, Tai MC, Mariapun S, Li J, et al.
    Nat Commun, 2020 07 31;11(1):3833.
    PMID: 32737321 DOI: 10.1038/s41467-020-17680-w
    Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia.
    Matched MeSH terms: Genome-Wide Association Study
  4. Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al.
    Nat Commun, 2018 02 08;9(1):556.
    PMID: 29422604 DOI: 10.1038/s41467-018-02942-5
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
    Matched MeSH terms: Genome-Wide Association Study
  5. Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, et al.
    Nat Commun, 2016 Apr 27;7:11375.
    PMID: 27117709 DOI: 10.1038/ncomms11375
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
    Matched MeSH terms: Genome-Wide Association Study/methods*
  6. Lawrenson K, Kar S, McCue K, Kuchenbaeker K, Michailidou K, Tyrer J, et al.
    Nat Commun, 2016 Sep 07;7:12675.
    PMID: 27601076 DOI: 10.1038/ncomms12675
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
    Matched MeSH terms: Genome-Wide Association Study
  7. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
    Matched MeSH terms: Genome-Wide Association Study*
  8. Schumacher-Schuh AF, Bieger A, Okunoye O, Mok KY, Lim SY, Bardien S, et al.
    Mov Disord, 2022 Aug;37(8):1593-1604.
    PMID: 35867623 DOI: 10.1002/mds.29126
    BACKGROUND: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine.

    OBJECTIVE: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations.

    METHODS: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information.

    RESULTS: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs.

    CONCLUSION: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future. © 2022 International Parkinson and Movement Disorder Society.

    Matched MeSH terms: Genome-Wide Association Study
  9. Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500396 DOI: 10.3390/molecules27238304
    The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
    Matched MeSH terms: Genome-Wide Association Study
  10. Benson MD, Khor CC, Gage PJ, Lehmann OJ
    Mol Vis, 2017;23:952-962.
    PMID: 29296075
    Purpose: To evaluate the ability of a targeted genome-wide association study (GWAS) to identify genes associated with central corneal thickness (CCT).

    Methods: A targeted GWAS was used to investigate whether ten candidate genes with known roles in corneal development were associated with CCT in two Singaporean populations. The single nucleotide polymorphisms (SNPs) within a 500 kb interval encompassing each candidate were analyzed, and in light of the resulting data, members of the Wnt pathway were subsequently screened using similar methodology.

    Results: Variants within the 500 kb interval encompassing three candidate genes, DKK1 (rs1896368, p=1.32×10-3), DKK2 (rs17510449, p=7.34×10-4), and FOXO1 (rs7326616, p=1.56×10-4 and rs4943785, p=1.19×10-3), were statistically significantly associated with CCT in the Singapore Indian population. DKK2 was statistically significantly associated with CCT in a separate Singapore Malaysian population (rs10015200, p=2.26×10-3). Analysis of Wnt signaling pathway genes in each population demonstrated that TCF7L2 (rs3814573, p=1.18×10-3), RYK (rs6763231, p=1.12×10-3 and rs4854785, p=1.11×10-3), and FZD8 (rs640827, p=5.17×10-4) were statistically significantly associated with CCT.

    Conclusions: The targeted GWAS identified four genes (DKK1, DKK2, RYK, and FZD8) with novel associations with CCT and confirmed known associations with two genes, FOXO1 and TCF7L2. All six participate in the Wnt pathway, supporting a broader role for Wnt signaling in regulating the thickness of the cornea. In parallel, this study demonstrated that a hypothesis-driven candidate gene approach can identify associations in existing GWAS data sets.

    Matched MeSH terms: Genome-Wide Association Study*
  11. Sullivan P, 96 Psychiatric Genetics Investigators
    Mol Psychiatry, 2012 Jan;17(1):2-3.
    PMID: 21826059 DOI: 10.1038/mp.2011.94
    Matched MeSH terms: Genome-Wide Association Study*
  12. Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Cearns M, et al.
    Mol Psychiatry, 2021 Jun;26(6):2457-2470.
    PMID: 32203155 DOI: 10.1038/s41380-020-0689-5
    Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.
    Matched MeSH terms: Genome-Wide Association Study
  13. Coleman JRI, Peyrot WJ, Purves KL, Davis KAS, Rayner C, Choi SW, et al.
    Mol Psychiatry, 2020 Jul;25(7):1430-1446.
    PMID: 31969693 DOI: 10.1038/s41380-019-0546-6
    Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD stratified by reported trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD with reported trauma exposure (24%) was greater than MDD without reported trauma exposure (12%). Simulations showed that this is not confounded by the strong, positive genetic correlation observed between MDD and reported trauma exposure. We also observed that the genetic correlation between MDD and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8 × 10-7 versus rg = -0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3 × 10-4). Our results suggest that the genetic contribution to MDD is greater when reported trauma is present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD.
    Matched MeSH terms: Genome-Wide Association Study*
  14. Kwong QB, Teh CK, Ong AL, Heng HY, Lee HL, Mohamed M, et al.
    Mol Plant, 2016 Aug 01;9(8):1132-1141.
    PMID: 27112659 DOI: 10.1016/j.molp.2016.04.010
    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle.
    Matched MeSH terms: Genome-Wide Association Study
  15. Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH
    Mar Biotechnol (NY), 2019 Jun;21(3):384-395.
    PMID: 30863905 DOI: 10.1007/s10126-019-09888-9
    Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p 
    Matched MeSH terms: Genome-Wide Association Study
  16. Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, et al.
    Mar Biotechnol (NY), 2019 Apr;21(2):250-261.
    PMID: 30737627 DOI: 10.1007/s10126-019-09877-y
    Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
    Matched MeSH terms: Genome-Wide Association Study
  17. Rajadurai P, Cheah PL, How SH, Liam CK, Annuar MAA, Omar N, et al.
    Lung Cancer, 2019 10;136:65-73.
    PMID: 31446227 DOI: 10.1016/j.lungcan.2019.08.005
    In the recent years, increased understanding of the molecular profiles of non-small cell lung cancer (NSCLC) has allowed for targeted treatment of actionable genetic mutations. The management of NSCLC now requires multiple molecular tests to guide the treatment strategy. In the light of this, there is a need to establish a molecular testing consensus statement for advanced NSCLC patients in Malaysia. This Malaysian consensus statement was developed by a panel of experts, chaired by a pathologist and composed of three other pathologists, four respiratory physicians and three oncologists. It reflects currently available scientific data and adaptations of recommendations from international guidelines to the local landscape. Expert recommendations on different aspects of molecular testing agreed upon by the panel are provided as structured discussions. These recommendations address the appropriate patients and samples to be tested, as well as when and how these tests should be performed. The algorithms for molecular testing in metastatic NSCLC, in the first line setting and upon disease progression beyond first line therapy, were developed.
    Matched MeSH terms: Genome-Wide Association Study
  18. Cross-Disorder Group of the Psychiatric Genomics Consortium
    Lancet, 2013 Apr 20;381(9875):1371-9.
    PMID: 23453885 DOI: 10.1016/S0140-6736(12)62129-1
    BACKGROUND: Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia.

    METHODS: We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33,332 cases and 27,888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples.

    FINDINGS: SNPs at four loci surpassed the cutoff for genome-wide significance (p<5×10(-8)) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers.

    INTERPRETATION: Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause.

    FUNDING: National Institute of Mental Health.

    Matched MeSH terms: Genome-Wide Association Study*
  19. Ellulu MS, Jalambo MO
    Kathmandu Univ Med J (KUMJ), 2018 2 16;15(57):91-93.
    PMID: 29446373
    Urbanization has provided experimental settings for testing the interactive relationship between genetic background and changes in lifestyle and dietary patterns. The concept of gene-environment interaction was described by epidemic of obesity along with urbanization. Genome-wide association has identified several genes such as melanocortin-4 receptor that associates with environmental influences of obesity. Gene environment (GxE) interaction refers to modification by an environmental factor of the effect of a genetic variant on a phenotypic trait. GxE interactions can serve to modulate the adverse effects of a risk allele, or can exacerbate the genotype-phenotype relationship and increase risk.
    Matched MeSH terms: Genome-Wide Association Study/methods*
  20. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

    Matched MeSH terms: Genome-Wide Association Study/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links