Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.
Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
METHOD: Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.
RESULT: Sub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.
CONCLUSION: The present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats.
AIMS OF STUDY: The aim of the present study is to evaluate the repeated dose toxicity of the standardized aqueous extract administered daily for 30 days through oral administration at its effective hypoglycemia doses.
MATERIALS AND METHODS: The seeds were dried, ground and extracted in deionized water. A HPLC-photodiode array method was developed and validated for the standardization of both the hypoglycemia agents, namely bruceine D and E in aqueous extract. Both normoglycemia and streptozotocin (STZ)-induced diabetic rats were fed orally with 15, 30 and 60mg/kg body weight of standardized aqueous extract. The blood glucose was measured at 0-8h. In repeated dose toxicity, similar doses were administered orally to rats for 30 days. At the end of 30 days, the blood was withdrawn and subjected to biochemical and haematology analysis while organs were harvested for histology analysis.
RESULTS: Oral administration of standardized aqueous extract exhibited a dose-response relationship in both the normoglycemia and STZ-induced diabetic rats. Daily oral administration of 15, 30 and 60mg/kg standardized aqueous extract for 30 days to rats did not show signs to toxicity in its biochemical, haematology and histology analysis.
CONCLUSION: In conclusion, although the seeds were reported to contain compounds with various pharmacological activity, the daily oral administration to rats for 30 days do not showed signs of toxicity at its effective hypoglycemia doses.
RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.
CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.
AIM OF THE STUDY: Our study focuses on previously unreported anti-depressant activity of E. variegata bark ethanolic extract (EBE) and determination of its mechanism of action possibly through regulation of monoamine oxidase activity in mouse brain homogenates.
MATERIALS AND METHODS: EBE was characterized using standard protocols for phytochemical analysis, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis. Anti-depressant activity of EBE (50, 100, 200 and 500 mg/kg) was evaluated in Swiss white albino mice using acute and chronic forced swim test (FST) models. Furthermore, the potential use of the extract as an adjunct to selective serotonin reuptake inhibitor (SSRI), escitalopram, was evaluated using the chronic unpredictable mild stress test model wherein inhibitory effects on monoamine oxidase (MAO) A and B were assessed by spectrophotometric-chemical analysis in mouse whole brain homogenates.
RESULTS: The extract showed significant reduction in immobility time periods in both acute (200 mg/kg) and chronic (100, 200 and 500 mg/kg) FST models. When used as an adjunct with escitalopram (15 mg/kg), the extract (100, 200 and 500 mg/kg) showed significantly greater inhibition of MAO-A and B activities when compared to escitalopram alone (30 mg/kg). Phytochemical analysis of EBE revealed presence of sugars, steroids, glycosides, alkaloids and tannins. LC-MS and GC-MS analysis identified components such as 2-amino-3-methyl-1-butanol, phenylethylamine, eriodictyol, daidzein and pomiferin, N-ethyl arachidonoyl amine, inosine diphosphate, trimipramine, granisetron, 3,4-dihydroxymandelic acid, ethyl ester, tri-TMS and dodecane, previously reported for their anti-depressant activity.
CONCLUSIONS: The study thus demonstrated potential for use of the E. variegata bark ethanolic extract as an adjunct to currently available SSRI treatment. The study also identified components present in E. variegata bark ethanolic extract that may be responsible for its anti-depressant activity. Furthermore, the study thus confirms the traditional use of E. variegata barks in improving CNS function through its anti-depressant like activity.