Displaying publications 61 - 80 of 155 in total

Abstract:
Sort:
  1. Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208700 DOI: 10.3390/molecules26123677
    Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.
    Matched MeSH terms: Mice, Inbred ICR
  2. Chia JSM, Farouk AAO, Mohamad TAST, Sulaiman MR, Zakaria H, Hassan NI, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202590 DOI: 10.3390/molecules26133849
    Neuropathic pain is a chronic pain condition persisting past the presence of any noxious stimulus or inflammation. Zerumbone, of the Zingiber zerumbet ginger plant, has exhibited anti-allodynic and antihyperalgesic effects in a neuropathic pain animal model, amongst other pharmacological properties. This study was conducted to further elucidate the mechanisms underlying zerumbone's antineuropathic actions. Research on therapeutic agents involving cannabinoid (CB) and peroxisome proliferator-activated receptors (PPARs) is rising. These receptor systems have shown importance in causing a synergistic effect in suppressing nociceptive processing. Behavioural responses were assessed using the von Frey filament test (mechanical allodynia) and Hargreaves plantar test (thermal hyperalgesia), in chronic constriction injury (CCI) neuropathic pain mice. Antagonists SR141716 (CB1 receptor), SR144528 (CB2 receptor), GW6471 (PPARα receptor) and GW9662 (PPARγ receptor) were pre-administered before the zerumbone treatment. Our findings indicated the involvement of CB1, PPARα and PPARγ in zerumbone's action against mechanical allodynia, whereas only CB1 and PPARα were involved against thermal hyperalgesia. Molecular docking studies also suggest that zerumbone has a comparable and favourable binding affinity against the respective agonist on the CB and PPAR receptors studied. This finding will contribute to advance our knowledge on zerumbone and its significance in treating neuropathic pain.
    Matched MeSH terms: Mice, Inbred ICR
  3. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R
    Molecules, 2010 Nov 16;15(11):8366-76.
    PMID: 21081857 DOI: 10.3390/molecules15118366
    The methanolic extract of Languas galanga rhizomes was investigated for antimalarial activity against Plasmodium berghei (NK65) infections in mice. The median lethal dose was determined to ascertain the safety of the extract in ICR mice of both sexes. The antimalarial activities during early and established infections, as well as the prophylactic activity were evaluated. Phytochemical screening and radical scavenging activity of the extract were also investigated to elucidate the possible mechanism of the antimalarial properties. The acute oral toxicity (LD₅₀) of Languas galanga extract in mice was established to be 4.998 mg/kg. The extract of Languas galanga rhizomes demonstrated significant antiplasmodial activity in all the three models of the antimalarial evaluations. Phytochemical screening revealed the presence of some vital antiplasmodial constituents such as terpenoids and flavonoids. The extract also exhibited a moderate capacity to scavenge the free radicals. The rhizome extract of Languas galanga thus possesses antimalarial activity, which explains the rational usage of this plant in traditional Malaysian medicine.
    Matched MeSH terms: Mice, Inbred ICR
  4. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
    Matched MeSH terms: Mice, Inbred ICR
  5. Pang T, Devi S, Puthucheary S, Pawlowski N
    Microbiol. Immunol., 1991;35(3):267-71.
    PMID: 1870442
    Mouse macrophages pre-labeled with [3H]arachidonic acid (20:4) were shown to release metabolites generated by the lipoxygenase and cyclo-oxygenase pathways following in vitro addition of heat-killed Salmonella typhi. These metabolites were maximally released after 60-90 min of incubation and consisted of prostaglandins (85%), leukotriene C (6%), di-HETEs, leukotrienes D and E (4%), mono-HETEs (2%) and other metabolites (3%). Of the metabolites generated by the cyclo-oxygenase pathway (prostaglandins), 6-keto PGF1 alpha and PGE2 were generated at a ratio of 1.2 to 1. The significance and importance of these results are discussed.
    Matched MeSH terms: Mice, Inbred ICR
  6. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J
    Microb Pathog, 2009 Sep;47(3):111-7.
    PMID: 19524661 DOI: 10.1016/j.micpath.2009.06.003
    To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environmental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease, phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the culture filtrates of all the 15 isolates at different time points of growth 4-24h. Over time, activity of each enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be increased in 60-100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and mortality rate ranged from few days to several weeks.
    Matched MeSH terms: Mice, Inbred ICR
  7. Zakaria ZA, Hassan MH, Nurul Aqmar MN, Abd Ghani M, Mohd Zaid SN, Sulaiman MR, et al.
    Methods Find Exp Clin Pharmacol, 2007 Oct;29(8):515-20.
    PMID: 18040526
    This study was carried out in mice to determine the nonopioid receptor signaling pathway(s) that might modulate the antinociceptive activity of the aqueous and chloroform extracts of Muntingia calabura (M. calabura) leaves, using the hot-plate test. The leaves of M. calabura were sequentially soaked [1:2 (w/v); 72 h] in distilled water (dH(2)O) and chloroform. The 50% concentration extracts were selected for this study based on the plant's previously established antinociceptive profiles. The mice (n = 7) were pretreated (s.c.) for 10 min with the selected nonopioid receptor antagonists, followed by the (s.c.) administration of the respective extract. The latency of discomfort was recorded at the interval time of 0.5, 1, 2, 3, 4 and 5 h after the extract administration. The 5 mg/kg atropine, 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol, 1 mg/kg haloperidol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the aqueous extract-induced antinociceptive activity. The 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the chloroform extract-induced antinociceptive activity. In conclusion, the central antinociceptive activity of M. calabura leaves appears to be involved in the modulation of various nonopioid receptor signaling pathways. Its aqueous extract antinociceptive activity is mediated via modulation of the muscarinic, alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic, dopaminergic and GABAergic receptors, while its chloroform extract activity is mediated via modulation of the alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic and GABAergic receptors.
    Matched MeSH terms: Mice, Inbred ICR
  8. Dasiman R, Rahman NS, Othman S, Mustafa MF, Yusoff NJ, Jusoff WH, et al.
    Med Sci Monit Basic Res, 2013 Oct 04;19:258-66.
    PMID: 24092420 DOI: 10.12659/MSMBR.884019
    BACKGROUND: This study aimed to investigate the effects of vitrification and slow freezing on actin, tubulin, and nuclei of in vivo preimplantation murine embryos at various developmental stages using a Confocal Laser Scanning Microscope (CLSM).

    MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.

    RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.

    CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.

    Matched MeSH terms: Mice, Inbred ICR
  9. Zakaria ZA, Mustapha S, Sulaiman MR, Mat Jais AM, Somchit MN, Abdullah FC
    Med Princ Pract, 2007;16(2):130-6.
    PMID: 17303949
    The present study was carried out to investigate the antinociceptive activity of the aqueous extract of Muntingia calabura (MCAE) leaves and to determine the effect of temperature and the involvement of the opioid receptor on the said activity using the abdominal constriction test (ACT) and hot-plate test (HPT) in mice.
    Matched MeSH terms: Mice, Inbred ICR
  10. Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, et al.
    Malar J, 2019 Dec 19;18(1):434.
    PMID: 31856836 DOI: 10.1186/s12936-019-3070-x
    BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice.

    METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated.

    RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice.

    CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.

    Matched MeSH terms: Mice, Inbred ICR
  11. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Mice, Inbred ICR
  12. Lalani S, Tan SH, Tan KO, Lim HX, Ong KC, Wong KT, et al.
    Life Sci, 2021 Dec 15;287:120097.
    PMID: 34715144 DOI: 10.1016/j.lfs.2021.120097
    AIMS: Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model.

    MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71.

    KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs).

    SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.

    Matched MeSH terms: Mice, Inbred ICR
  13. Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, et al.
    J Virol Methods, 2007 Aug;143(2):140-6.
    PMID: 17442409
    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
    Matched MeSH terms: Mice, Inbred ICR
  14. Tan KY, Tan CH, Fung SY, Tan NH
    J Proteomics, 2015 Apr 29;120:105-25.
    PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012
    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness.
    Matched MeSH terms: Mice, Inbred ICR
  15. Chang HC, Tsai TS, Tsai IH
    J Proteomics, 2013 Aug 26;89:141-53.
    PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012
    This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities.
    Matched MeSH terms: Mice, Inbred ICR
  16. Tan NH, Wong KY, Tan CH
    J Proteomics, 2017 03 22;157:18-32.
    PMID: 28159706 DOI: 10.1016/j.jprot.2017.01.018
    The venom proteome of Naja sputatrix (Javan spitting cobra) was elucidated through reverse-phase HPLC, nano-ESI-LCMS/MS and data mining. A total of 97 distinct protein forms belonging to 14 families were identified. The most abundant proteins are the three-finger toxins (3FTXs, 64.22%) and phospholipase A2 (PLA2, 31.24%), followed by nerve growth factors (1.82%), snake venom metalloproteinase (1.33%) and several proteins of lower abundance (<1%) including a variety of venom enzymes. At subproteome, the 3FTx is dominated by cytotoxins (48.08%), while short neurotoxins (7.89%) predominate over the long neurotoxins (0.48%) among other neurotoxins of lesser toxicity (muscarinic toxin-like proteins, 5.51% and weak neurotoxins, 2.26%). The major SNTX, CTX and PLA2 toxins were isolated with intravenous median lethal doses determined as 0.13, 1.06 and 0.50μg/g in mice, respectively. SABU, the Indonesia manufactured homologous tri-specific antivenom could neutralize the CTX and PLA2 fraction with moderate potency (potency=0.14-0.16mg toxin per ml antivenom). The SNTX, however, was very poorly neutralized with a potency level of 0.034mg/ml, indicating SNTX as the main limiting factor in antivenom neutralization. The finding helps elucidate the inferior efficacy of SABU reported in neutralizing N. sputatrix venom, and supports the call for antivenom improvement.

    BIOLOGICAL SIGNIFICANCE: The Javan spitting cobra, Naja sputatrix is by itself a unique species and should not be confused as the equatorial and the Indochinese spitting cobras. The distinction among the spitting cobras was however unclear prior to the revision of cobra systematics in the mid-90's, and results of some earlier studies are now questionable as to which species was implicated back then. The current study successfully profiled the venom proteome of authenticated N. sputatrix, and showed that the venom is made up of approximately 64% three-finger toxins (including neurotoxins and cytotoxins) and 31% phospholipases A2 by total venom proteins. The findings verified that the paralyzing components in the venom i.e. neurotoxins are predominantly the short-chain subtype (SNTX) far exceeding the long-chain subtype (LNTX) which is more abundant in the venoms of monocled cobra and Indian common cobra. The neurotoxicity of N. sputatrix venom is hence almost exclusively SNTX-driven, and effective neutralization of the SNTX is the key to early reversal of paralysis. Unfortunately, as shown through a toxin-specific assay, the immunological neutralization of the SNTX using the Indonesian antivenom (SABU) was extremely weak, implying that SABU has limited therapeutic efficacy in treating N. sputatrix envenomation clinically. From the practical standpoint, actions need to be taken at all levels from laboratory to production and policy making to ensure that the shortcoming is overcome.

    Matched MeSH terms: Mice, Inbred ICR
  17. Tan SH, Ong KC, Wong KT
    J. Neuropathol. Exp. Neurol., 2014 Nov;73(11):999-1008.
    PMID: 25289894 DOI: 10.1097/NEN.0000000000000122
    Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.
    Matched MeSH terms: Mice, Inbred ICR
  18. Fu TL, Ong KC, Tan SH, Wong KT
    J. Neuropathol. Exp. Neurol., 2019 12 01;78(12):1160-1170.
    PMID: 31675093 DOI: 10.1093/jnen/nlz103
    Japanese encephalitis (JE) is a known CNS viral infection that often involves the thalamus early. To investigate the possible role of sensory peripheral nervous system (PNS) in early neuroinvasion, we developed a left hindlimb footpad-inoculation mouse model to recapitulate human infection by a mosquito bite. A 1-5 days postinfection (dpi) study, demonstrated focal viral antigens/RNA in contralateral thalamic neurons at 3 dpi in 50% of the animals. From 4 to 5 dpi, gradual increase in viral antigens/RNA was observed in bilateral thalami, somatosensory, and piriform cortices, and then the entire CNS. Infection of neuronal bodies and adjacent nerves in dorsal root ganglia (DRGs), trigeminal ganglia, and autonomic ganglia (intestine, etc.) was also observed from 5 dpi. Infection of explant organotypic whole brain slice cultures demonstrated no viral predilection for the thalamus, while DRG and intestinal ganglia organotypic cultures confirmed sensory and autonomic ganglia susceptibility to infection, respectively. Early thalamus and sensory-associated cortex involvement suggest an important role for sensory pathways in neuroinvasion. Our results suggest that JE virus neuronotropism is much more extensive than previously known, and that the sensory PNS and autonomic system are susceptible to infection.
    Matched MeSH terms: Mice, Inbred ICR
  19. Lee BW, Park JG, Ha TKQ, Pham HTT, An JP, Noh JR, et al.
    J Nat Prod, 2019 08 23;82(8):2201-2210.
    PMID: 31393125 DOI: 10.1021/acs.jnatprod.9b00224
    Melicope pteleifolia has long been consumed as a popular vegetable and tea in Southeast Asian countries, including Malaysia and southern mainland China, and is effective in the treatment of colds and inflammation. In the search for active metabolites that can explain its traditional use as an antipyretic, six new phloroacetophenone derivatives (3-8) along with seven known compounds (1, 2, and 9-13) were isolated from the leaves of M. pteleifolia. Their chemical structures were confirmed by extensive spectroscopic analysis including NMR, IR, ECD, and HRMS. All compounds isolated from the leaves of M. pteleifolia (1-13) have a phloroacetophenone skeleton. Notably, the new compound 8 contains an additional cyclobutane moiety in its structure. The bioactivities of the isolated compounds were evaluated, and compounds 1, 6, and 7 inhibited tumor necrosis factor-α-induced prostaglandin E2. Moreover, the major constituent, 3,5-di-C-β-d-glucopyranosyl phloroacetophenone (1), was found to be responsible for the antipyretic activity of M. pteleifolia based on in vivo experiments.
    Matched MeSH terms: Mice, Inbred ICR
  20. Baba MS, Zin NM, Hassan ZA, Latip J, Pethick F, Hunter IS, et al.
    J Microbiol, 2015 Dec;53(12):847-55.
    PMID: 26626355 DOI: 10.1007/s12275-015-5076-6
    Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.
    Matched MeSH terms: Mice, Inbred ICR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links