Displaying publications 61 - 80 of 94 in total

Abstract:
Sort:
  1. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Drug Metab. Dispos., 2010 May;38(5):745-51.
    PMID: 20139165 DOI: 10.1124/dmd.109.031054
    Variation in CYP2A6 levels and activity can be attributed to genetic polymorphism and, thus, functional characterization of allelic variants is necessary to define the importance of CYP2A6 polymorphism in humans. The aim of the present study was to investigate the reported alleles CYP2A6*15, CYP2A6*16, CYP2A6*21, and CYP2A6*22, in terms of the functional consequences of their mutations on the enzyme catalytic activity. With use of the wild-type CYP2A6 cDNA as template, site-directed mutagenesis was performed to introduce nucleotide changes encoding K194E substitution in CYP2A6*15, R203S substitution in CYP2A6*16, K476R substitution in CYP2A6*21, and concurrent D158E and L160I substitutions in CYP2A6*22. Upon sequence verification, the CYP2A6 wild-type and mutant constructs were individually coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. A kinetic study using a coumarin 7-hydroxylase assay indicated that CYP2A6*15 exhibited higher V(max) than the wild type, whereas all mutant constructs, except for variant CYP2A6*16, exhibited higher K(m) values. Analysis of the V(max)/K(m) ratio revealed that all mutants demonstrated 0.85- to 1.05-fold differences from the wild type, with the exception of variant CYP2A6*22, which only portrayed 39% of the wild-type intrinsic clearance. These data suggested that individuals carrying the CYP2A6*22 allele are likely to have lower metabolism of CYP2A6 substrate than individuals expressing CYP2A6*15, CYP2A6*16, CYP2A6*21, and the wild type.
    Matched MeSH terms: Mutagenesis, Site-Directed
  2. Ariffin H, Martel-Planche G, Daud SS, Ibrahim K, Hainaut P
    Cancer Genet. Cytogenet., 2008 Oct;186(1):49-53.
    PMID: 18786442 DOI: 10.1016/j.cancergencyto.2008.06.004
    We report on a Malaysian kindred with Li-Fraumeni syndrome. The proband was an 8-year-old girl who presented with embryonal rhabdomyosarcoma of the trunk at the age of 8 months and developed a brain recurrence at the age of 7 years, which was 5 years after remission. A younger sister later developed adrenocortical carcinoma at the age of 6 months. Their mother and maternal grandmother were diagnosed with breast cancer at the ages of 26 and 38 years, respectively. TP53 mutation detection in this family revealed a duplication of a GGCGTG motif starting at nucleotide 17579 in exon 10, resulting in an in-frame insertion of two amino acids between residues 334 and 336 in the tetramerization domain of the p53 protein. This mutation was found in the proband and her affected sister as well as her mother. In addition, the mutation was detected in two other siblings (a brother aged 3 years and a sister aged 18 months) who have not yet developed any malignancy. Sequencing of TP53 in the father and two other asymptomatic siblings revealed wild-type TP53. To our knowledge, this is a first report of a Li-Fraumeni syndrome family in Southeast Asia.
    Matched MeSH terms: Mutagenesis, Insertional
  3. Chin IS, Abdul Murad AM, Mahadi NM, Nathan S, Abu Bakar FD
    Protein Eng. Des. Sel., 2013 May;26(5):369-75.
    PMID: 23468570 DOI: 10.1093/protein/gzt007
    Cutinase has been ascertained as a biocatalyst for biotechnological and industrial bioprocesses. The Glomerella cingulata cutinase was genetically modified to enhance its enzymatic performance to fulfill industrial requirements. Two sites were selected for mutagenesis with the aim of altering the surface electrostatics as well as removing a potentially deamidation-prone asparagine residue. The N177D cutinase variant was affirmed to be more resilient to temperature increase with a 2.7-fold increase in half-life at 50°C as compared with wild-type enzyme, while, the activity at 25°C is not compromised. Furthermore, the increase in thermal tolerance of this variant is accompanied by an increase in optimal temperature. Another variant, the L172K, however, exhibited higher enzymatic performance towards phenyl ester substrates of longer carbon chain length, yet its thermal stability is inversely affected. In order to restore the thermal stability of L172K, we constructed a L172K/N177D double variant and showed that these two mutations yield an improved variant with enhanced activity towards phenyl ester substrates and enhanced thermal stability. Taken together, our study may provide valuable information for enhancing catalytic performance and thermal stability in future engineering endeavors.
    Matched MeSH terms: Mutagenesis, Site-Directed
  4. Cabauatan PQ, Melcher U, Ishikawa K, Omura T, Hibino H, Koganezawa H, et al.
    J Gen Virol, 1999 Aug;80 ( Pt 8):2229-37.
    PMID: 10466823
    The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
    Matched MeSH terms: Mutagenesis
  5. AbuBakar S, Wong PF, Chan YF
    J Gen Virol, 2002 Oct;83(Pt 10):2437-2442.
    PMID: 12237425 DOI: 10.1099/0022-1317-83-10-2437
    Phylogenetic analyses of the envelope (E) gene sequence of five recently isolated dengue virus type 4 (DENV-4) suggested the emergence of a distinct geographical and temporal DENV-4 subgenotype IIA in Malaysia. Four of the isolates had direct ancestral lineage with DENV-4 Indonesia 1973 and showed evidence of intra-serotypic recombination with the other recently isolated DENV-4, MY01-22713. The E gene of isolate MY01-22713 had strong evidence of an earlier recombination involving DENV-4 genotype II Indonesia 1976 and genotype I Malaysia 1969. These results suggest that intra-serotypic recombination amongst DENV-4 from independent ancestral lineages may have contributed to the emergence of DENV-4 subgenotype IIA in Malaysia.
    Matched MeSH terms: Mutagenesis
  6. Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC
    Fish Physiol Biochem, 2020 Aug;46(4):1349-1359.
    PMID: 32239337 DOI: 10.1007/s10695-020-00793-w
    Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
    Matched MeSH terms: Mutagenesis, Site-Directed
  7. Low KO, Mahadi NM, Abdul Rahim R, Rabu A, Abu Bakar FD, Abdul Murad AM, et al.
    J Biotechnol, 2010 Dec;150(4):453-9.
    PMID: 20959127 DOI: 10.1016/j.jbiotec.2010.10.001
    The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.
    Matched MeSH terms: Mutagenesis
  8. Abdul Wahab R, Basri M, Raja Abdul Rahman RN, Salleh AB, Abdul Rahman MB, Leow TC
    Enzyme Microb Technol, 2016 Nov;93-94:174-181.
    PMID: 27702478 DOI: 10.1016/j.enzmictec.2016.08.020
    Site-directed mutagenesis of the oxyanion-containing amino acid Q114 in the recombinant thermophilic T1 lipase previously isolated from Geobacillus zalihae was performed to elucidate its role in the enzyme's enantioselectivity and reactivity. Substitution of Q114 with a hydrophobic methionine to yield mutant Q114M increased enantioselectivity (3.2-fold) and marginally improved reactivity (1.4-fold) of the lipase in catalysing esterification of ibuprofen with oleyl alcohol. The improved catalytic efficiency of Q114L was concomitant with reduced flexibility in the active site while the decreased enantioselectivity of Q114L could be directly attributed to diminished electrostatic repulsion of the substrate carboxylate ion that rendered partial loss in steric hindrance and thus enantioselectivity. The highest E-values for both Q114L (E-value 14.6) and Q114M (E-value 48.5) mutant lipases were attained at 50°C, after 12-16h, with a molar ratio of oleyl alcohol to ibuprofen of 1.5:1 and at 2.0% (w/v) enzyme load without addition of molecular sieves. Pertinently, site-directed mutagenesis on the Q114 oxyanion of T1 resulted in improved enantioselectivity and such approach may be applicable to other lipases of the same family. We demonstrated that electrostatic repulsion phenomena could affect flexibility/rigidity of the enzyme-substrate complex, aspects vital for enzyme activity and enantioselectivity of T1.
    Matched MeSH terms: Mutagenesis, Site-Directed
  9. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Mutagenesis, Site-Directed
  10. Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al.
    Molecules, 2021 Sep 20;26(18).
    PMID: 34577167 DOI: 10.3390/molecules26185696
    Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)-AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (-31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (-60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
    Matched MeSH terms: Mutagenesis, Site-Directed
  11. Khoo YL, Cheah SH, Chong H
    Immunotherapy, 2017 06;9(7):567-577.
    PMID: 28595518 DOI: 10.2217/imt-2017-0016
    AIM: To develop a fully bioactive humanized antibody from the chimeric rituximab for potential clinical applications using a relatively simpler and faster logical and bioinformatics approach.

    METHODS: From bioinformatics data, mismatched mouse amino acids in variable light and heavy chain amphipathic regions were identified and substituted with those common to human antibody framework. Appropriate synthetic DNA sequences inserted into vectors were transfected into HEK293 cells to produce the humanized antibody.

    RESULTS: Humanized antibodies showed specific binding to CD20 and greater cytotoxicity to cancer WIL2-NS cell proliferation than rituximab in vitro.

    CONCLUSION: A humanized version of rituximab with potential to be developed into a biobetter for treatment of B-cell disorders has been successfully generated using a logical and bioinformatics approach.

    Matched MeSH terms: Mutagenesis, Site-Directed
  12. Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY
    BMC Genomics, 2020 Apr 23;21(1):319.
    PMID: 32326906 DOI: 10.1186/s12864-020-6709-7
    BACKGROUND: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out.

    RESULTS: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process.

    CONCLUSION: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.

    Matched MeSH terms: Mutagenesis
  13. Lau KA, Wang B, Kamarulzaman A, Ngb KP, Saksena NK
    Curr HIV Res, 2008 Mar;6(2):108-16.
    PMID: 18336258
    The Asian HIV epidemic appears to be complex, characterized by the prevalence of multiple subtypes and circulating recombinant forms with gradual replacement of pure HIV-1 subtypes in several geographical regions. The main objectives of the present study are to identify and analyse the full-length viral genomes of three unique recombinant forms (URFs); the HIV-1 isolates 07MYKLD47, 07MYKLD48 and 07MYKLD49 from Malaysia. Long-range polymerase chain reaction (PCR) amplification of seven overlapping reading frames was used to derive near full-length HIV-1 genomes. Detailed phylogenetic and bootscanning analyses were performed to determine phylogenetic associations and subtypic assignments. We further confirmed the mosaic composition of these CRF01_AE/B inter-subtype recombinant forms, which are composed of B-subtype fragment(s) in the backbone of CRF01_AE. Both 07MYKLD47 and 07MYKLD48 have an insertion of B subtype (880 bp and 532 bp) in the gag-pol and gp41-env gene regions, respectively. Whereas the isolate 07MYKLD49 has three B-subtype fragments inserted in different gene region along the genome; one each in the gag-pol (1862 bp) and pol-vif (1935 bp) regions, and a short B-subtype insertion (541 bp) in the 5' LTR-gag region. This highlights the public health relevance of newly emerging second generation HIV-1 recombinant forms and their dispersal, along with their rapid and continuous evolution in the region.
    Matched MeSH terms: Mutagenesis, Insertional
  14. Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, et al.
    Mar Biotechnol (NY), 2011 Oct;13(5):845-56.
    PMID: 21181422 DOI: 10.1007/s10126-010-9344-5
    Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
    Matched MeSH terms: Mutagenesis, Site-Directed
  15. Liew YJ, Soh WT, Jiemy WF, Hwang JS
    Toxins (Basel), 2015 Feb;7(2):407-22.
    PMID: 25654788 DOI: 10.3390/toxins7020407
    Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1-4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding.
    Matched MeSH terms: Mutagenesis, Site-Directed
  16. Yap KP, Gan HM, Teh CS, Chai LC, Thong KL
    BMC Genomics, 2014;15:1007.
    PMID: 25412680 DOI: 10.1186/1471-2164-15-1007
    Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection.
    Matched MeSH terms: Mutagenesis, Insertional
  17. Song YZ, Zhang ZH, Lin WX, Zhao XJ, Deng M, Ma YL, et al.
    PLoS One, 2013;8(9):e74544.
    PMID: 24069319 DOI: 10.1371/journal.pone.0074544
    The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet.
    Matched MeSH terms: Mutagenesis, Insertional
  18. Choong CJ, Say YH
    Neurotoxicology, 2011 Dec;32(6):857-63.
    PMID: 21658409 DOI: 10.1016/j.neuro.2011.05.012
    α-Synuclein (α-Syn) plays a crucial role in the pathophysiology of Parkinson's disease (PD). α-Syn has been extensively studied in many neuronal cell-based PD models but has yielded mixed results. The objective of this study was to re-evaluate the dual cytotoxic/protective roles of α-Syn in dopaminergic SH-SY5Y cells. Stable SH-SY5Y cells overexpressing wild type or familial α-Syn mutants (A30P, E46K and A53T) were subjected to acute and chronic rotenone and maneb treatment. Compared with untransfected SH-SY5Y cells, wild type α-Syn attenuated rotenone and maneb-induced cell death along with an attenuation of toxin-induced mitochondrial membrane potential changes and Reactive Oxygen Species level, whereas the mutant α-Syn constructs exacerbated environmental toxins-induced cytotoxicity. After chronic treatment, wild type α-Syn but not the mutant variants was found to rescue cells from subsequent acute hydrogen peroxide insult. These results suggest that the fundamental property of wild type α-Syn may be protective, and such property may be lost by its familial PD mutations.
    Matched MeSH terms: Mutagenesis, Site-Directed
  19. Cheong TG, Chan M, Kurunathan S, Ali SA, ZiNing T, Zainuddin ZF, et al.
    Microb Pathog, 2010 Feb;48(2):85-90.
    PMID: 19900531 DOI: 10.1016/j.micpath.2009.11.001
    Vibrio cholerae is a Gram-negative bacterium that causes diarrheal disease. V. cholerae O1 and O139 serogroups are toxigenic and are known to cause epidemic cholera. These serogroups produce cholera toxin and other accessory toxins such as accessory cholera enterotoxin, zonula occludens toxin, and multifunctional, autoprocessing repeat in toxin (MARTX). In the present study, we incorporated mutated rtxA and rtxC genes that encode MARTX toxin into the existing aminolevulinic acid (ALA) auxotrophic vaccine candidate VCUSM2 of V. cholerae O139 serogroup. The rtxC mutant was named VCUSM9 and the rtxC/rtxA mutant was named VCUSM10. VCUSM9 and VCUSM10 were able to colonize intestinal cells well, compared with the parent vaccine strain, and produced no fluid accumulation in a rabbit ileal loop model. Cell rounding and western blotting assays indicated that mutation of the rtxC gene alone (VCUSM9 strain) did not abolish MARTX toxicity. However mutation of both the rtxA and rtxC genes (VCUSM10) completely abolished MARTX toxicity. Thus we have produced a new, less reactogenic, auxotrophic rtxC/rtxA mutated vaccine candidate against O139 V. cholerae.
    Matched MeSH terms: Mutagenesis, Insertional
  20. Singh R, Ting JG, Pan Y, Teh LK, Ismail R, Ong CE
    Drug Metab. Pharmacokinet., 2008;23(3):165-74.
    PMID: 18574320
    The work described in this study aimed to express CYP2C8 wild-type and mutant proteins in bacterial expression system and to use the expressed proteins to investigate the structural and functional consequences of a reported allele CYP2C8(*)4 (carrying Ile264Met substitution) on protein activity. Ile264 was replaced by three different amino acids resulting in three mutant constructs, 2C8I264M, 2C8I264R and 2C8I264D. The presence of isoleucine at position 264 in CYP2C8 was found to be important for proper haem insertion and protein folding; whereas bulkier or charged residues were highly disruptive resulting in inactive proteins with minimum spectral and catalytic activities. This was evidenced from the low levels of Soret peak at 450 nm and negligible levels of tolbutamide methylhydroxylase activity. Kinetic study using paclitaxel indicated that all three mutants exhibited only 9.7 to 35.4% of the activity level observed in the wild-type. In addition, the mutants were more sensitive to proteinase K digestion, indicating a possible alteration of conformation. The combined effects of protein instability and compromised catalytic activity resulted in defective CYP2C8 protein which may have clinical implications in carriers of CYP2C8*4, particularly in terms of their capacity to clear potent drugs and their susceptibility to adverse drug reactions.
    Matched MeSH terms: Mutagenesis, Site-Directed
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links