Displaying publications 61 - 80 of 648 in total

Abstract:
Sort:
  1. Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NH, Jusoh R, et al.
    J Colloid Interface Sci, 2012 Nov 15;386(1):307-14.
    PMID: 22889626 DOI: 10.1016/j.jcis.2012.07.043
    In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5 g L(-1)), and initial MB concentration (5-60 mg L(-1)). The best conditions were achieved at pH 7 when using 0.1 g L(-1) MSN(AP) and 60 mg L(-1)MB to give a maximum monolayer adsorption capacity of 500.1 mg g(-1) at 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.
    Matched MeSH terms: Nanoparticles/chemistry*
  2. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:677-81.
    PMID: 21556342 DOI: 10.2147/IJN.S17669
    The application of "green" chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Zamiri R, Zakaria A, Abbastabar H, Darroudi M, Husin MS, Mahdi MA
    Int J Nanomedicine, 2011;6:565-8.
    PMID: 21698083 DOI: 10.2147/IJN.S16384
    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  4. Zak AK, Razali R, Majid WH, Darroudi M
    Int J Nanomedicine, 2011;6:1399-403.
    PMID: 21796242 DOI: 10.2147/IJN.S19693
    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  5. Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA
    Int J Nanomedicine, 2011;6:71-5.
    PMID: 21289983 DOI: 10.2147/IJN.S14005
    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  6. Pang SC, Chin SF, Anderson MA
    J Colloid Interface Sci, 2007 Jul 1;311(1):94-101.
    PMID: 17395194
    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.
    Matched MeSH terms: Nanoparticles/chemistry
  7. Soltani N, Saion E, Erfani M, Rezaee K, Bahmanrokh G, Drummen GP, et al.
    Int J Mol Sci, 2012;13(10):12412-27.
    PMID: 23202906 DOI: 10.3390/ijms131012412
    Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C-N and C=O with the nanoparticle's surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%), sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  8. Gharibshahi E, Saion E
    Int J Mol Sci, 2012;13(11):14723-41.
    PMID: 23203091 DOI: 10.3390/ijms131114723
    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  9. Erfani M, Saion E, Soltani N, Hashim M, Abdullah WS, Navasery M
    Int J Mol Sci, 2012;13(11):14434-45.
    PMID: 23203073 DOI: 10.3390/ijms131114434
    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB(2)O(4)) nanoparticles and tetraborate (CaB(4)O(7)) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.
    Matched MeSH terms: Nanoparticles/chemistry*
  10. Zainuddin SY, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A
    Carbohydr Polym, 2013 Feb 15;92(2):2299-305.
    PMID: 23399291 DOI: 10.1016/j.carbpol.2012.11.106
    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%.
    Matched MeSH terms: Nanoparticles/chemistry
  11. Sharma PA, Maheshwari R, Tekade M, Tekade RK
    Curr Pharm Des, 2015;21(30):4465-78.
    PMID: 26354926
    The increasing prevalence and complexity of cardiovascular diseases demand innovative strategies for diagnostic and therapeutic applications to improve patient care/prognoses. Additionally, various factors constrain present cardiovascular therapies, including low aqueous drug solubility, early metabolism, short half-life and drug delivery limitations. The efficient treatment of cardiovascular diseases requires improvement of traditional drug delivery systems. This can be accomplished by using novel nanomaterial that can incorporate diverse bio-actives along with diagnostic agents in a single carrier, referred to as theranostics. This review discusses the state of the art in the applications to diagnosis and therapy of innovative, nanomaterial- based strategies such as lipid based carriers, nanocapsules, magnetic nanoparticles, gold nanoparticles, protein conjugated nanoparticles, dendrimers and carbon-based nanoformulations with a special emphasis on how they can contribute to improving the management of cardiovascular disease.
    Matched MeSH terms: Nanoparticles/chemistry*
  12. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  13. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA
    Carbohydr Polym, 2015;127:202-8.
    PMID: 25965475 DOI: 10.1016/j.carbpol.2015.03.043
    In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
    Matched MeSH terms: Nanoparticles/chemistry*
  14. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Nanoparticles/chemistry*
  15. Tan KH, Awala H, Mukti RR, Wong KL, Rigaud B, Ling TC, et al.
    J Agric Food Chem, 2015 May 13;63(18):4655-63.
    PMID: 25897618 DOI: 10.1021/acs.jafc.5b00380
    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.
    Matched MeSH terms: Nanoparticles/chemistry*
  16. Wan Ibrahim WA, Nodeh HR, Aboul-Enein HY, Sanagi MM
    Crit Rev Anal Chem, 2015;45(3):270-87.
    PMID: 25849825 DOI: 10.1080/10408347.2014.938148
    Recently, a simple, rapid, high-efficiency, selective, and sensitive method for isolation, preconcentration, and enrichment of analytes has been developed. This new method of sample handling is based on ferum oxides as magnetic nanoparticles (MNPs) and has been used for magnetic solid-phase extraction (MSPE) of various analytes from various matrices. This review focuses on the applications of modified ferum oxides, especially modified Fe3O4 MNPs, as MSPE adsorbent for pesticide isolation from various matrices. Further perspectives on MSPE based on modified Fe3O4 for inorganic metal ions, organic compounds, and biological species from water samples are also presented. Ferum(III) oxide MNPs (Fe2O3) are also highlighted.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  17. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A
    Carbohydr Polym, 2015 May 20;122:202-11.
    PMID: 25817660 DOI: 10.1016/j.carbpol.2014.12.081
    Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC.
    Matched MeSH terms: Nanoparticles/chemistry*
  18. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Nanoparticles/chemistry
  19. Anniebell S, Gopinath SCB
    Curr Med Chem, 2018;25(12):1433-1445.
    PMID: 28093984 DOI: 10.2174/0929867324666170116123633
    BACKGROUND: Research interest on the properties of polymer conjugated gold nanoparticle (GNP) in biomedicine is rapidly rising because of the extensive evidences for their unique properties. In the field of biomedicine, GNPs have been widely used because of their inertness and low levels of cytotoxicity. Therefore, when exposed to cells, they are less prone to exert damaging effects. GNPs are capable of being functionalized as desired and are ideal as they do not encourage undesired side reactions that might counter react with the intention of the functionalization. Biofouling is an occurrence that takes place at cellular and biological molecular level, binds non-specifically on the detection surface and forms a wrong output. This undesired incidence can be avoided by conjugating the surface of biomolecules with polymers. Densely packed repeating chains of polymers such as polyethylene glycol are capable of decreasing non-specific reactions. Applications of polymer conjugated GNPs in the field of biomedicine are as biosensors, delivery and therapeutic agents.

    CONCLUSION: Therefore, the properties and applications of polymer conjugated GNPs are studied widely as overviewed here.

    Matched MeSH terms: Metal Nanoparticles/chemistry*
  20. Agi A, Junin R, Arsad A, Abbas A, Gbadamosi A, Azli NB, et al.
    PLoS One, 2019;14(9):e0220778.
    PMID: 31560699 DOI: 10.1371/journal.pone.0220778
    Ascorbic acid was used for the first time to synthesize cellulose nanoparticles (CNP) extracted from okra mucilage. The physical properties of the CNP including their size distribution, and crystalline structures were investigated. The rheological properties of the cellulose nanofluid (CNF) were compared with the bulk okra mucilage and commercial polymer xanthan. The interfacial properties of the CNF at the interface of oil-water (O/W) system were investigated at different concentrations and temperatures. The effects of the interaction between the electrolyte and ultrasonic were determined. Core flooding experiment was conducted at reservoir condition to justify the effect of the flow behaviour and disperse phase behaviour of CNF on additional oil recovery. The performance of the CNF was compared to conventional EOR chemical. The combined method of ultrasonic, weak-acid hydrolysis and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 51% and preserved crystallinity respectively. The zeta potential result shows that the CNF was stable, and the surface charge signifies long term stability of the fluid when injected into oil field reservoirs. The CNF, okra and xanthan exhibited shear-thinning and pseudoplastic behaviour. The IFT decreased with increase in concentration of CNF, electrolyte and temperature. The pressure drop data confirmed the stability of CNF at 120°C and the formation of oil bank was enough to increase the oil recovery by 20%. CNF was found to be very effective in mobilizing residual oil at high-temperature high-pressure (HTHP) reservoir condition. The energy and cost estimations have shown that investing in ultrasonic-assisted weak-acid hydrolysis is easier, cost-effective, and can reduce energy consumption making the method economically advantageous compared to conventional methods.
    Matched MeSH terms: Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links