Displaying publications 61 - 80 of 234 in total

Abstract:
Sort:
  1. Anand Kumar A, Rameshkumar G, Ravichandran S, Priya ER, Nagarajan R, Leng AG
    J Parasit Dis, 2015 Jun;39(2):206-10.
    PMID: 26064001 DOI: 10.1007/s12639-013-0320-7
    To identify the isopod parasite, which has been recorded from Miri, East Malaysian marine fishes. During the present study, four cymothoid isopods are reported three genera, including Cymothoa eremita, Lobothorax typus, Nerocila longispina and Nerocila loveni. Nerocila longispina and N. loveni are also previously reported from Malaysia and two additional cymothoids C. eremita and L. typus are reported for the first record of Miri coast, East Malaysia. New hosts were identified for N. loveni on Chirocentrus dorab for the first time in the world fauna. The Parasitological indexes were calculated. The site of attachment of the parasites on their hosts was also observed. These parasites can cause the damage in gill, eye and internal organ including swim bladder. Marine fish parasitology is a rapidly developing field of aquatic science.
    Matched MeSH terms: Parasites
  2. Millar SB, Cox-Singh J
    Clin Microbiol Infect, 2015 Jul;21(7):640-8.
    PMID: 25843504 DOI: 10.1016/j.cmi.2015.03.017
    In 2004 a large focus of Plasmodium knowlesi malaria was reported in the human population in Sarawak, Malaysian Borneo. Plasmodium knowlesi, a parasite of the South-East Asian macaques (Macaca fascicularis and Macaca nemestrina), had entered the human population. Plasmodium knowlesi is transmitted by the leucosphyrus group of Anopheline mosquitoes and transmission is largely zoonotic and restricted to the jungle setting. Humans entering jungle transmission sites are at risk. Since 2004, human cases of P. knowlesi have been continuously reported in local communities and in travellers returning from South East Asia. Plasmodium knowlesi is the most common type of indigenous malaria reported in Malaysia. Infections are most often uncomplicated but at least 10% of patients report with severe malaria and 1-2% of cases have a fatal outcome. Parasitaemia is positively associated with the clinical and laboratory markers of severe malaria. The current literature on P. knowlesi, including epidemiology, natural hosts and vectors, pathogenesis, clinical descriptions, treatment and diagnosis, is reviewed. There are many gaps in our understanding of this disease that are highlighted here with suggestions for further research to inform pre-emptive control measures that would be required to prevent a full emergence of this parasite into the human population.
    Matched MeSH terms: Parasites
  3. Tang KF, Pantoja CR, Redman RM, Han JE, Tran LH, Lightner DV
    J Invertebr Pathol, 2015 Sep;130:37-41.
    PMID: 26146228 DOI: 10.1016/j.jip.2015.06.009
    A microsporidian parasite, Enterocytozoon hepatopenaei (abbreviated as EHP), is an emerging pathogen for penaeid shrimp. EHP has been found in several shrimp farming countries in Asia including Vietnam, Thailand, Malaysia, Indonesia and China, and is reported to be associated with growth retardation in farmed shrimp. We examined the histological features from infected shrimp collected from Vietnam and Brunei, these include the presence of basophilic inclusions in the hepatopancreas tubule epithelial cells, in which EHP is found at various developmental stages, ranging from plasmodia to mature spores. By a PCR targeting the 18S rRNA gene, a 1.1kb 18S rRNA gene fragment of EHP was amplified, and this sequence showed a 100% identity to EHP found in Thailand and China. This fragment was cloned and labeled with digoxigenin-11-dUTP, and in situ hybridized to tissue sections of infected Penaeus vannamei (from Vietnam) and P. stylirostris (Brunei). The results of in situ hybridization were specific, the probe only reacted to the EHP within the cytoplasmic inclusions, not to a Pleistophora-like microsporidium that is associated with cotton shrimp disease. Subsequently, we developed a PCR assay from this 18S rRNA gene region, this PCR is shown to be specific to EHP, did not react to 2 other parasitic pathogens, an amoeba and the cotton shrimp disease microsporidium, nor to genomic DNA of various crustaceans including polychaetes, squids, crabs and krill. EHP was detected, through PCR, in hepatopancreatic tissue, feces and water sampled from infected shrimp tanks, and in some samples of Artemia biomass.
    Matched MeSH terms: Parasites
  4. Zainalabidin FA, Azmi MS, Bakri WN, Sathaya G, Ismail MI
    Trop Life Sci Res, 2015 Dec;26(2):121-4.
    PMID: 26868715 MyJurnal
    Fascioliasis, or trematode infestation, is an important disease caused by Fasciola hepatica and Fasciola gigantica. Both species are hepatic parasites that affect humans. We have examined the zoonotic aspects of fascioliasis. A total of 80 fresh liver samples were collected from 67 Kedah-Kelantan crossbred cattle and 13 Murrah buffalo at 4 local abattoirs in Perak, Malaysia. The samples were examined macroscopically to detect the presence of Fasciola spp. The results show 7.50% (6 of 80) of the animals were diagnosed with fascioliasis. Overall, 7.46% (5 of 67) and 7.69% (1 of 13) of cattle and buffalo samples were positive, respectively. There were only F. gigantica species identified in the samples. Our findings suggest that precautions should be taken because the disease has a zoonotic impact on public health.
    Matched MeSH terms: Parasites
  5. Diyes GCP, Karunaratne WAIP, Tomberlin JK, Rajakaruna RS
    Trop Biomed, 2015 Dec 01;32(4):791-795.
    PMID: 33557472
    Megaselia scalaris (Loew) is a cosmopolitan polyphagous small fly with the ability of exploiting variety of ecological niches. Different life history stages act as detritivore, parasite, and parasitoid of wider spectrum of plant and animal matter under natural and laboratory conditions. Here, for the first time we present the opportunistic parasitism of M. scalaris on Otobius megnini, which act as a vector of Q fever and is capable of causing paralysis, toxic conditions, otoacariasis and otitis in humans and other animals. Tick samples from the ear canals of 14 thoroughbred horses were brought to the laboratory and several days later, larvae of M. scalaris were found feeding on immature stages of O. megnini. When the development was completed pupae were found attached to adult ticks and all nymphs were found dead. This context reveals the capability of M. scalaris surviving on O. megnini and the risk of their invading ear canals of horses.
    Matched MeSH terms: Parasites
  6. Ng YH, Fong MY, Subramaniam V, Shahari S, Lau YL
    Res Vet Sci, 2015 Dec;103:201-4.
    PMID: 26679818 DOI: 10.1016/j.rvsc.2015.10.009
    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.
    Matched MeSH terms: Parasites
  7. Kristmundsson Á, Erlingsdóttir Á, Freeman MA
    PLoS One, 2015;10(12):e0144685.
    PMID: 26684810 DOI: 10.1371/journal.pone.0144685
    Due to the total and unexpected collapse of the Iceland scallop, Chlamys islandica, stocks around Iceland during the 2000s, a commercial fishing ban has been imposed on this valuable resource since 2003. Following the initial identification of an apicomplexan parasite in the scallops, a long-term surveillance program was established to evaluate the effect of the parasite on the population. The infections were highly prevalent in all shell sizes throughout the study. However, the parasite only impacts mature scallops where they cause severe macroscopic changes, characterized by an extensively diminished and abnormally coloured adductor muscle. A highly significant relationship was observed between infection intensity and gonad and adductor muscle indices. The first four years of the study, were characterized by high infection intensity and very poor condition of the adductor muscle and gonads, whilst during subsequent years, infections gradually decreased and the condition of the scallops improved. Histopathological changes were restricted to the presence of apicomplexan zoites which were widely distributed, causing varying degrees of pathology in all organs. In heavy infections, muscular and connective tissues were totally necrotized, destroying significant parts of numerous organs, especially the adductor muscle, digestive gland and gonads. The progression of the disease was in good synchrony with the mortality rates and the subsequent decline observed in the scallop stock and recruitment indices. Our findings strongly suggest that the apicomplexan parasite played a major role in the collapse of the Iceland scallop stock in Breidafjordur. In addition to causing mortality, the infections significantly impact gonad development which contributes further to the collapse of the stock in the form of lower larval recruitment. Furthermore, compelling evidence exists that this apicomplexan pathogen is causing serious disease outbreaks in other scallop populations. Similar abnormal adductor muscles and the parasite itself have been identified or observed in association with other mass mortality events in several different scallop species and commercial stocks in the northern hemisphere.
    Matched MeSH terms: Parasites
  8. Young ND, Chan KG, Korhonen PK, Min Chong T, Ee R, Mohandas N, et al.
    Sci Rep, 2015;5:17345.
    PMID: 26621075 DOI: 10.1038/srep17345
    Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
    Matched MeSH terms: Parasites
  9. Paparazzo F, Tellier A, Stephan W, Hutter S
    PLoS One, 2015;10(7):e0132129.
    PMID: 26154519 DOI: 10.1371/journal.pone.0132129
    The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor.
    Matched MeSH terms: Parasites/physiology*
  10. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA
    Antimicrob Agents Chemother, 2015;60(3):1283-8.
    PMID: 26666949 DOI: 10.1128/AAC.01123-15
    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis.
    Matched MeSH terms: Parasites
  11. Phua, K.L.
    MyJurnal
    The Orang Asli of Malaysia continue to experience poor health. There appears to be stagnation of certain aspect of their health status. Underweight (low weight-for-age) and stunting (low height-for-age) are significant amongst Orang Asli children. Worm infestation such as Ascaris, Trichuris and hookworm continue to afflict Orang Asli communities in Malaysia. Orang Asli communities can also be afflicted by other kinds of parasites, e.g. malaria parasites, microsporida parasites and Cryptosporidium parasites. Thus, primary care doctors who treat Orang Asli patients should be on the lookout for malnutrition and its effects (including anaemia, iodine deficiency, Vitamin A deficiency) as well as worm and parasite infestations. Such patients may need to undergo de-worming at regular intervals because of the tendency to get re-infected. Primary care doctors also need to be aware of possible interactions between infestations and nutritional deficiencies.
    Matched MeSH terms: Parasites
  12. Cheong, F.W., Lau, Y.L., Fong, M.Y.
    JUMMEC, 2015;18(2):1-7.
    MyJurnal
    Malaria is a major cause of mortality and morbidity globally. Great efforts have been made in the prevention and the elimination of malaria, especially in controlling the malaria vector, the mosquito. Another promising approach would be the development of malaria vaccines. Malaria vaccine studies can be focused on the pre-erythrocytic-stage antigens and the blood-stage antigens, and on the transmission blocking agents targeting the malaria gametocytes. The blood-stage antigens are the leading candidates in malaria vaccine development, as the blood-stage parasites are responsible for causing symptomatic malaria. Human acquired immunity largely targets on blood-stage antigens. This review focuses on one of the most extensively studied blood-stage antigen, the merozoite surface protein-1 (MSP-1), specifically on its evaluation and immunogenicity in rodents and primate models, and its safety and immunogenicity in human clinical trials.
    Matched MeSH terms: Parasites
  13. Chua, T.H., Stanis, C.S., Song, B.K., Lau, Y.L., Jelip, P., Lau, T.Y.
    MyJurnal
    Malaria is a major public health problem in tropical and subtropical areas, caused by five
    species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale andP. knowlesi) and is the leading cause of morbidity and mortality worldwide. We have developed molecular markers for three genes viz, Cytb, dhfr and Msp-1 gene and designed a protocol for rapid molecular diagnostics of the four malaria parasites prevalent in Southeast Asia. The new primers were used on the blood
    samples containing Plasmodium parasites by conventional PCR. The result was compared with
    the nested PCR of Singh et al. (2004) and the microscopy method. The result shows that the new
    set of primers had successfully amplified all four human malaria parasite species. These primers
    were 100% sensitive and more specific than microscopy and PCR identification using these
    primers was faster than the nested PCR. These alternative primers should provide powerful and
    rapid molecular diagnostic method for detecting Plasmodium species as well as providing reliable
    data for epidemiology study. These primers have the potential to be combined and used in
    multiplex PCR.
    Matched MeSH terms: Parasites
  14. Abdul-Mutalib, N.A., Syafinaz, A.N., Sakai, K., Shirai, Y.
    MyJurnal
    Foodborne disease has been associated with microorganisms like bacteria, fungi, viruses and parasites. Most commonly, the outbreaks take place due to the ingestion of pathogenic bacteria like Salmonella Typhi, Escherichia coli, Staphylococcus aureus, Vibrio cholera, Campylobacter jejuni, and Listeria monocytogenes. The disease usually happens as a result of toxin secretion of the microorganisms in the intestinal tract of the infected person. Usually, the level of hygiene in the food premises reflect the quality of the food item, hence restaurant or stall with poor sanitary condition is said to be the contributor to food poisoning outbreak. In Malaysia, food poisoning cases are not rare because the hot and humid climate of this country is very suitable for the growth of the foodborne bacteria. The government is also implementing strict rules to ensure workers and owners of food premises prioritize the cleanliness of their working area. Training programme for food handlers can also help them to implement hygiene as a routine in a daily basis. A lot of studies have been done to reduce foodborne diseases. The results can give information about the types of microorganisms, and other components that affect their growth. The result is crucial to determine how the spread of foodborne bacteria can be controlled safely and the outbreak can be reduced.
    Matched MeSH terms: Parasites
  15. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

    Matched MeSH terms: Parasites
  16. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al.
    Nat Plants, 2016 02 22;2:16014.
    PMID: 27249349 DOI: 10.1038/nplants.2016.14
    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems.
    Matched MeSH terms: Parasites/drug effects; Parasites/physiology
  17. Nasai NB, Abba Y, Abdullah FF, Marimuthu M, Tijjani A, Sadiq MA, et al.
    Vet World, 2016 Apr;9(4):417-20.
    PMID: 27182139 DOI: 10.14202/vetworld.2016.417-420
    Gastrointestinal helminthosis is a global problem in small ruminant production. Most parasites have developed resistance to commonly available anthelminthic compounds, and there is currently an increasing need for new compounds with more efficacies. This study evaluated the in vitro effects of ethanolic extract of Curcuma longa (EECL) as a biological nematicide against third stage Haemonchus larvae (L3) isolated from sheep.
    Matched MeSH terms: Parasites
  18. Yong HS, Song SL, Eamsobhana P, Lim PE
    Acta Trop, 2016 May 17;161:33-40.
    PMID: 27207134 DOI: 10.1016/j.actatropica.2016.05.002
    Angiostrongylus malaysiensis is a nematode parasite of various rat species. When first documented in Malaysia, it was referred to as A. cantonensis. Unlike A. cantonensis, the complete mitochondrial genome of A. malaysiensis has not been documented. We report here its complete mitogenome, its differentiation from A. cantonensis, and the phylogenetic relationships with its congeners and other Metastrongyloid taxa. The whole mitogenome of A. malaysiensis had a total length of 13,516bp, comprising 36 genes (12 PCGs, 2 rRNA and 22 tRNA genes) and a control region. It is longer than that of A. cantonensis (13,509bp). Its control region had a long poly T-stretch of 12bp which was not present in A. cantonensis. A. malaysiensis and A. cantonensis had identical start codon for the 12 PCGs, but four PCGs (atp6, cob, nad2, nad6) had different stop codon. The cloverleaf structure for the 22 tRNAs was similar in A. malaysiensis and A. cantonensis except the TΨC-arm was absent in trnV for A. malaysiensis but present in A. cantonensis. The Angiostrongylus genus was monophyletic, with A. malaysiensis and A. cantonensis forming a distinct lineage from that of A. costaricensis and A. vasorum. The genetic distance between A. malaysiensis and A. cantonensis was p=11.9% based on 12 PCGs, p=9.5% based on 2 rRNA genes, and p=11.6% based on 14 mt-genes. The mitogenome will prove useful for studies on phylogenetics and systematics of Angiostrongylus lungworms and other Metastrongyloid nematodes.
    Matched MeSH terms: Parasites
  19. Tang KFJ, Han JE, Aranguren LF, White-Noble B, Schmidt MM, Piamsomboon P, et al.
    J Invertebr Pathol, 2016 Oct;140:1-7.
    PMID: 27530403 DOI: 10.1016/j.jip.2016.08.004
    White feces syndrome (WFS) is an emerging problem for penaeid shrimp farming industries in SE Asia countries, Thailand, Malaysia, Vietnam, Indonesia, China, and in India. This occurrence of this syndrome is usually first evidenced by the appearance of white fecal strings floating on surface of the shrimp ponds. The gross signs of affected shrimp include the appearance of a whitish hindgut and loose carapace, and it is associated with reduced feeding and growth retardation. To investigate the nature of the white feces syndrome, samples of white feces and shrimp hepatopancreas tissue were collected from Penaeus vannamei in affected farms in Indonesia, and these were examined histologically. Within the white feces, we found densely packed spores of the microsporidian Enterocytozoon hepatopenaei (abbreviated as EHP) and relatively fewer numbers of rod-shaped bacteria. From WFS ponds, hepatopancreas samples form 30 individual shrimp were analyzed by histology and in situ hybridization. The results showed that all of the shrimp examined were infected with EHP accompanied by septic hepatopancreatic necrosis (SHPN). Midgut epithelial cells were also infected and this increased the number of tissue types being affected by EHP. By PCR, EHP was detected in all the samples analyzed from WFS-affected ponds, but not in those sampled from healthy shrimp ponds. To determine the modes of transmission for this parasite, we performed feeding and cohabitation bioassays, the results showed that EHP can be transmitted through per os feeding of EHP-infected hepatopancreas tissue to healthy shrimp and through cohabitation ofinfected and healthy shrimp. In addition, we found the use of Fumagillin-B, an antimicrobial agent, was ineffective in either reducing or eliminating EHP in infected shrimp.
    Matched MeSH terms: Parasites
  20. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, et al.
    Ecotoxicol Environ Saf, 2016 Oct;132:318-28.
    PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
    Matched MeSH terms: Parasites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links