Displaying publications 61 - 80 of 357 in total

Abstract:
Sort:
  1. Anmol RJ, Marium S, Hiew FT, Han WC, Kwan LK, Wong AKY, et al.
    J Evid Based Integr Med, 2021 10 19;26:2515690X211043741.
    PMID: 34657477 DOI: 10.1177/2515690X211043741
    Citrus grandis or Citrus maxima, widely recognized as Pomelo is widely cultivated in many countries because of their large amounts of functional, nutraceutical and biological activities. In traditional medicine, various parts of this plant including leaf, pulp and peel are used for generations as they are scientifically proven to have therapeutic potentials and safe for human use. The main objective of this study was to review the different therapeutic applications of Citrus grandis and the phytochemicals associated with its medicinal values. In this article different pharmacological properties like antimicrobial, antitumor, antioxidant, anti-inflammatory, anticancer, antiepileptic, stomach tonic, cardiac stimulant, cytotoxic, hepatoprotective, nephroprotective, and anti-diabetic activities of the plant are highlighted. The enrichment of the fruit with flavonoids, polyphenols, coumarins, limonoids, acridone alkaloids, essential oils and vitamins mainly helps in exhibiting the pharmacological activities within the body. The vitamins enriched fruit is rich in nutritional value and also has minerals like calcium, phosphorous, sodium and potassium, which helps in maintaining the proper health and growth of the bones as well as the electrolyte balance of the body. To conclude, various potential therapeutic effects of Citrus grandis have been demonstrated in recent literature. Further studies on various parts of fruit, including pulp, peel, leaf, seed and it essential oil could unveil additional pharmacological activities which can be beneficial to the mankind.
    Matched MeSH terms: Phytochemicals
  2. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M
    Molecules, 2017 06 19;22(6).
    PMID: 28629185 DOI: 10.3390/molecules22061019
    Leptadenia reticulata (Retz.) Wight & Arn. (Apocynaceae), is a traditional medicinal plant species widely used to treat various ailments such as tuberculosis, hematopoiesis, emaciation, cough, dyspnea, fever, burning sensation, night blindness, cancer, and dysentery. In Ayurveda, it is known for its revitalizing, rejuvenating, and lactogenic properties. This plant is one of the major ingredients in many commercial herbal formulations, including Speman, Envirocare, Calshakti, Antisept, and Chyawanprash. The therapeutic potential of this herb is because of the presence of diverse bioactive compounds such as α-amyrin, β-amyrin, ferulic acid, luteolin, diosmetin, rutin, β-sitosterol, stigmasterol, hentricontanol, a triterpene alcohol simiarenol, apigenin, reticulin, deniculatin, and leptaculatin. However, most biological studies on L. reticulata are restricted to crude extracts, and many biologically active compounds are yet to be identified in order to base the traditional uses of L. reticulata on evidence-based data. At present, L. reticulata is a threatened endangered plant because of overexploitation, unscientific harvesting, and habitat loss. The increased demand from pharmaceutical, nutraceutical, and veterinary industries has prompted its large-scale propagation. However, its commercial cultivation is hampered because of the non-availability of genuine planting material and the lack of knowledge about its agronomical practices. In this regard, micropropagation techniques will be useful to obtain true-to-type L. reticulata planting materials from an elite germplasm to meet the current demand. Adopting other biotechnological approaches such as synthetic seed technology, cryopreservation, cell culture, and genetic transformation can help conservation as well as increased metabolite production from L. reticulata. The present review summarizes scientific information on the botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects of L. reticulata. This comprehensive information will certainly allow better utilization of this industrially important herb towards the discovery of lead drug molecules.
    Matched MeSH terms: Phytochemicals/pharmacology*; Phytochemicals/therapeutic use; Phytochemicals/chemistry*
  3. Hashim YZ, Kerr PG, Abbas P, Mohd Salleh H
    J Ethnopharmacol, 2016 Aug 02;189:331-60.
    PMID: 27343768 DOI: 10.1016/j.jep.2016.06.055
    ETHNOPHARMACOLOGICAL RELEVANCE: Aquilaria spp. (agarwood) has been a part of Ayurvedic and Traditional Chinese Medicine for centuries. Agarwood has also been used as a traditional medicine in Southeast Asian countries, Bangladesh and Tibet. Its common uses include the treatment of joint pain, inflammatory-related ailments, and diarrhoea, as well as a stimulant, sedative and cardioprotective agent. In this paper, we aim to provide an overview of the phytochemistry, ethnomedicinal use, pharmacological activities and safety of plant materials from Aquilaria spp. as an evidence base to further appraise its potential use as a source of health beneficial compounds.

    MATERIALS AND METHODS: Literature abstracts and full text articles from journals, books, reports and electronic searches (Google Scholar, Elsevier, PubMed, Read Cube, Scopus, Springer, and Web of Science), as well as from other relevant websites, are surveyed, analysed and included in this review.

    RESULTS: A literature survey of agarwood plant materials showed that they contain sesquiterpenes, 2(-2-phenylethyl)-4H-chromen-4-one derivatives, genkwanins, mangiferins, iriflophenones, cucurbitacins, terpenoids and phenolic acids. The crude extracts and some of the isolated compounds exhibit anti-allergic, anti-inflammatory, anti-diabetic, anti-cancer, anti-oxidant, anti-ischemic, anti-microbial, hepatoprotective, laxative, and mosquitocidal properties and effects on the central nervous system. Agarwood plant materials are considered to be safe based on the doses tested. However, the toxicity and safety of the materials, including the smoke from agarwood incense burning, should be further investigated. Future research should be directed towards the bio-guided isolation of bioactive compounds with proper chemical characterisation and investigations of the underlying mechanisms towards drug discovery.

    CONCLUSIONS: The traditional medicinal use of agarwood plant materials has provided clues to their pharmacological properties. Indeed, agarwood contains a plethora of bioactive compounds that now elegantly support their use in traditional medicine. As wild agarwood trees are critically endangered and vulnerable, sustainable agricultural and forestry practices are necessary for the further development and utilization of agarwood as a source of health beneficial compounds.

    Matched MeSH terms: Phytochemicals/adverse effects; Phytochemicals/isolation & purification; Phytochemicals/therapeutic use*; Phytochemicals/chemistry
  4. Meng X, Li J, Li M, Wang H, Ren B, Chen J, et al.
    J Ethnopharmacol, 2021 Aug 10;276:114145.
    PMID: 33932518 DOI: 10.1016/j.jep.2021.114145
    ETHNOPHARMACOLOGICAL RELEVANCE: Gynura cass., belonging to the tribe Senecoineae of the family Compositae, contains more than 40 accepted species as annual or perennial herbs, mainly distributed in Asia, Africa and Australia. Among them, 11 species are distributed in China. Many of the Gynura species have been used as traditional herbal medicines for the treatment of diabetes mellitus, rheumatism, eruptive fever, gastric ulcer, bleeding, abscesses, bruises, burning pains, rashes and herpes zoster infection in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Some of the species have been used as vegetables, tea beverage or ornamental plants by the local people.

    AIM OF THE STUDY: A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future.

    MATERIALS AND METHODS: A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure.

    RESULTS: Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon.

    CONCLUSION: The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.

    Matched MeSH terms: Phytochemicals/adverse effects; Phytochemicals/pharmacology*; Phytochemicals/therapeutic use*; Phytochemicals/toxicity
  5. Afzal K, Uzair M, Chaudhary BA, Ahmad A, Afzal S, Saadullah M
    Acta Pol Pharm, 2015 Sep-Oct;72(5):821-7.
    PMID: 26665388
    Ruellia is a genus of flowering plants commonly known as Ruellias or Wild Petunias which belongs to the family Acanthaceae. It contains about 250 genera and 2500 species. Most of these are shrubs, or twining vines; some are epiphytes. Only a few species are distributed in temperate regions. They are distributed in Indonesia and Malaysia, Africa, Brazil, Central America and Pakistan. Some of these are used as medicinal plants. Many species of the genus has antinociceptive, antioxidant, analgesic, antispasmolytic, antiulcer, antidiabetic and anti-inflammatory properties. The phytochemicals constituents: glycosides, alkaloids, flavonoids and triterpenoids are present. The genus has been traditionally claimed to be used for the treatment of flu, asthma, fever, bronchitis, high blood pressure, eczema, and diabetes. The objective of this review article is to summarize all the pharmacological and phytochemical evaluations or investigations to find area of gap and endorse this genus a step towards commercial drug. Hence, further work required is to isolate and characterize the active compounds responsible for these activities in this plant and bring this genus plants to commercial health market to serve community with their potential benefits.
    Matched MeSH terms: Phytochemicals/analysis
  6. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZ, Moga M
    Molecules, 2014 Jul 28;19(8):10998-1029.
    PMID: 25072202 DOI: 10.3390/molecules190810998
    Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.
    Matched MeSH terms: Phytochemicals/chemistry
  7. Mohajer S, Taha RM, Lay MM, Esmaeili AK, Khalili M
    ScientificWorldJournal, 2014;2014:854093.
    PMID: 25147870 DOI: 10.1155/2014/854093
    Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin.
    Matched MeSH terms: Phytochemicals/chemistry*
  8. Khanam Z, Singh O, Singh R, Bhat IU
    J Ethnopharmacol, 2013 Nov 25;150(2):421-41.
    PMID: 24045177 DOI: 10.1016/j.jep.2013.08.064
    Safed musli (Chlorophytum borivilianum) is an eminent medicinal plant of India and considered as a 'white gold' or 'divya aushad' in Indian systems of medicine. In Ayurveda, Chlorophytum borivilianum belongs to the group of "Vajikaran Rasayana" corroborated to its rejuvenating, aphrodisiac, natural sex tonic properties and effective in alleviating sexual disorders. It is largely used as ethnic medicine by local healers of indigenous communities of India.
    Matched MeSH terms: Phytochemicals/analysis
  9. Al Muqarrabun LM, Ahmat N, Ruzaina SA, Ismail NH, Sahidin I
    J Ethnopharmacol, 2013 Nov 25;150(2):395-420.
    PMID: 24016802 DOI: 10.1016/j.jep.2013.08.041
    Pongamia pinnata (L.) Pierre is one of the many plants with diverse medicinal properties where all its parts have been used as traditional medicine in the treatment and prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, and wounds.
    Matched MeSH terms: Phytochemicals/analysis
  10. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(3):1565-70.
    PMID: 23679237
    Relationships between diet and health have attracted attention for centuries; but links between diet and cancer have been a focus only in recent decades. The consumption of diet-containing carcinogens, including polycyclic aromatic hydrocarbons and heterocyclic amines is most closely correlated with increasing cancer risk. Epidemiological evidence strongly suggests that consumption of dietary phytochemicals found in vegetables and fruit can decrease cancer incidence. Among the various vegetables, broccoli and other cruciferous species appear most closely associated with reduced cancer risk in organs such as the colorectum, lung, prostate and breast. The protecting effects against cancer risk have been attributed, at least partly, due to their comparatively high amounts of glucosinolates, which differentiate them from other vegetables. Glucosinolates, a class of sulphur- containing glycosides, present at substantial amounts in cruciferous vegetables, and their breakdown products such as the isothiocyanates, are believed to be responsible for their health benefits. However, the underlying mechanisms responsible for the chemopreventive effect of these compounds are likely to be manifold, possibly concerning very complex interactions, and thus difficult to fully understand. Therefore, this article provides a brief overview about the mechanism of such compounds involved in modulation of carcinogen metabolising enzyme systems.
    Matched MeSH terms: Phytochemicals/therapeutic use*
  11. Chan EWC, Wong SK, Tangah J, Inoue T, Chan HT
    J Integr Med, 2020 May;18(3):189-195.
    PMID: 32115383 DOI: 10.1016/j.joim.2020.02.006
    Flavonoids are by far the most dominant class of phenolic compounds isolated from Morus alba leaves (MAL). Other classes of compounds are benzofurans, phenolic acids, alkaloids, coumarins, chalcones and stilbenes. Major flavonoids are kuwanons, moracinflavans, moragrols and morkotins. Other major compounds include moracins (benzofurans), caffeoylquinic acids (phenolic acids) and morachalcones (chalcones). Research on the anticancer properties of MAL entailed in vitro and in vivo cytotoxicity of extracts or isolated compounds. Flavonoids, benzofurans, chalcones and alkaloids are classes of compounds from MAL that have been found to be cytotoxic towards human cancer cell lines. Further studies on the phytochemistry and anticancer of MAL are suggested. Sources of information were PubMed, PubMed Central, ScienceDirect, Google, Google Scholar, J-Stage, PubChem and China National Knowledge Infrastructure.
    Matched MeSH terms: Phytochemicals/pharmacology
  12. Ranjha MMAN, Kanwal R, Shafique B, Arshad RN, Irfan S, Kieliszek M, et al.
    Molecules, 2021 Aug 12;26(16).
    PMID: 34443475 DOI: 10.3390/molecules26164893
    Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called "phytoconstituents" that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
    Matched MeSH terms: Phytochemicals*
  13. Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA
    Mol Med Rep, 2017 Mar;15(3):1007-1016.
    PMID: 28112383 DOI: 10.3892/mmr.2017.6133
    The study of wound‑healing plants has acquired an interdisciplinary nature with a systematic investigational approach. Several biochemicals are involved in the healing process of the body, including antioxidants and cytokines. Although several pharmaceutical preparations and formulations are available for wound care and management, it remains necessary to search for efficacious treatments, as certain current formulations cause adverse effects or lack efficacy. Phytochemicals or biomarkers from numerous plants suggest they have positive effects on different stages of the wound healing process via various mechanisms. Several herbal medicines have displayed marked activity in the management of wounds and various natural compounds have verified in vivo wound healing potential, and can, therefore, be considered as potential drugs of natural origin. Chromolaena odorata (L.) R.M. King and H. Robinson is considered a tropical weed. However, it exhibits anti‑inflammatory, antipyretic, analgesic, antimicrobial, cytotoxic and numerous other relevant medicinal properties on an appreciable scale, and is known in some parts of the world as a traditional medicine used to treat various ailments. To understand its specific role as nature's gift for healing wounds and its contribution to affordable healthcare, this plant must be scientifically assessed based on the available literature. This review aims to summarize the role of C. odorata and its biomarkers in the wound healing activities of biological systems, which are crucial to its potential future drug design, development and application for the treatment of wounds.
    Matched MeSH terms: Phytochemicals/chemistry
  14. Bruguière A, Derbré S, Coste C, Le Bot M, Siegler B, Leong ST, et al.
    Fitoterapia, 2018 Nov;131:59-64.
    PMID: 30321650 DOI: 10.1016/j.fitote.2018.10.003
    Usually isolated from Garcinia (Clusiaceae) or Hypericum (Hypericaceae) species, some Polycyclic Polyprenylated AcylPhloroglucinols (PPAPs) have been recently reported as potential research tools for immunotherapy. Aiming at exploring the chemodiversity of PPAPs amongst Garcinia genus, a dereplication process suitable for such natural compounds has been developed. Although less sensitive than mass spectrometry, NMR spectroscopy is perfectly reproducible and allows stereoisomers distinction, justifying the development of 13C-NMR strategies. Dereplication requires the use of databases (DBs). To define if predicted DBs were accurate enough as dereplication tools, experimental and predicted δC of natural products usually isolated from Clusiaceae were compared. The ACD/Labs commercial software allowed to predict 73% of δC in a 1.25 ppm range around the experimental values. Consequently, with these parameters, the major PPAPs from a Garcinia bancana extract were successfully identified using a predicted DB.
    Matched MeSH terms: Phytochemicals/isolation & purification
  15. Sangkanu S, Mitsuwan W, Mahboob T, Mahabusarakam W, Chewchanwuttiwong S, Siphakdi P, et al.
    Acta Trop, 2022 Feb;226:106266.
    PMID: 34890540 DOI: 10.1016/j.actatropica.2021.106266
    Acanthamoeba keratitis infection extends due to the growing number of contact lens users. Indigenous plants including Garcinia mangostana play a vital role in human health and well being. Many species of this plant have been reported with myriads of potent medicinal properties. However, the aims of this study were, for the first time, to isolate compounds from the flower of G. mangostana and to test their anti-Acanthamoeba and anti-adhesion activity against Acanthamoeba triangularis. Powdered flowers of G. mangostana were extracted and chromatographed on a silica gel column. The structures of the compounds were established with the aid of 1H NMR. More so, the anti-Acanthamoeba and anti-adhesion properties were tested on a 96-well polystyrene microtiter plate and soft contact lenses. Scanning electron microscope (SEM) was used to determine the features of A. triangularis on contact lenses. Eight pure compounds were obtained, namely 9-hydroxycalabaxanthone, tovophillin A, garcinone E, garcinone B, α-mangostin, gartinin, 8-deoxygartinin and γ-mangostin. The extract and pure compounds exhibited anti-Acanthamoeba activity with MIC values in the range of 0.25-1 mg/mL. In addition, the extract and α-mangostin displayed significant activity against the adhesion of A. triangularis trophozoites both in polystyrene plate and in contact lenses at 0.5 × MIC (0.25 mg/mL). Furthermore, α-mangostin has the potential to remove A. triangularis adhesion in contact lenses similar to a commercial multipurpose solution (MPS). SEM study confirmed that crude extract and α-mangostin are effective as solutions for contact lenses, which removed A. triangularis trophozoites within 24 h. Alpha-mangostin was non-toxic to Vero cells at a concentration below 39 μM in 24 h. Crude extract of G. mangostana flower and its α-mangostin serve as candidate compounds in the treatment of Acanthamoeba infection or as lens care solution, since they can be used as a source of natural products against Acanthamoeba and virulence factor associated with the adhesion of A. triangularis.
    Matched MeSH terms: Phytochemicals/pharmacology
  16. Leow SS, Fairus S, Sambanthamurthi R
    Crit Rev Food Sci Nutr, 2022;62(32):9076-9092.
    PMID: 34156318 DOI: 10.1080/10408398.2021.1939648
    The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
    Matched MeSH terms: Phytochemicals/analysis
  17. Alhassan AM, Ahmed QU, Malami I, Zakaria ZA
    Pharm Biol, 2021 Dec;59(1):955-963.
    PMID: 34283002 DOI: 10.1080/13880209.2021.1950776
    CONTEXT: Pseudocedrela kotschyi (Schweinf) Harms (Meliaceae) is an important medicinal plant found in tropical and subtropical countries of Africa. Traditionally, P. kotschyi is used in the treatment of various diseases including diabetes, malaria, abdominal pain and diarrhoea.

    OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs.

    METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words.

    RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects.

    CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.

    Matched MeSH terms: Phytochemicals/pharmacology*
  18. Jannat K, Hasan A, Bondhon TA, Mahboob T, Paul AK, Jahan R, et al.
    Trop Biomed, 2021 Dec 01;38(4):540-551.
    PMID: 35001920 DOI: 10.47665/tb.38.4.097
    Despite the huge loss of lives and massive disruption of the world economy by the COVID -19 pandemic caused by SARS -CoV-2, scientists are yet to come out with an effective therapeutic against this viral disease . Several vaccines have obtained 'emergency approval ', but difficulties are being faced in the even distribution of vaccines amongst high- and low- income countries . On top of it, comorbidities associated with COVID -19 like diabetes, hypertension and malaria can seriously impede the treatment of the main disease, thus increasing the fatality rate . This is more so in the context of sub -Saharan African and south Asian countries . Our objective was to demonstrate that a single plant containing different phytoconstituents may be used for treatment of COVID -19 and comorbidities . Towards initial selection of a plant, existing scientific literature was scanned for reported relevant traditional uses, phytochemicals and pharmacological activities of a number of plants and their phytoconstituents pertaining to treatment of COVID-19 symptoms and comorbidities. Molecular docking studies were then performed with phytochemicals of the selected plant and SARS-CoV-2 components - Mpro, and spike protein receptor binding domain and hACE2 interface using AutoDock V ina. We showed that crude extracts of an indigenous African plant, Costus afer having traditional antidiabetic and antimalarial uses, has phytochemicals with high binding affinities for Mpro, and /or spike protein receptor binding domain and hACE2 interface; the various phytochemicals with predicted high binding energies include aferoside C, dibutyl phthalate, nerolidol, suginal, and ± -terpinene, making them potential therapeutics for COVID -19. The results suggest that crude extracts and phytochemicals of C. afer can function as a treatment modality for COVID -19 and comorbidities like especially diabetes and malaria .
    Matched MeSH terms: Phytochemicals/pharmacology
  19. R R
    Appl Biochem Biotechnol, 2022 Jan;194(1):176-186.
    PMID: 34762268 DOI: 10.1007/s12010-021-03742-2
    Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
    Matched MeSH terms: Phytochemicals/analysis*
  20. Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, et al.
    Molecules, 2023 May 19;28(10).
    PMID: 37241926 DOI: 10.3390/molecules28104186
    Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
    Matched MeSH terms: Phytochemicals/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links