Displaying publications 61 - 80 of 337 in total

Abstract:
Sort:
  1. Tamilvanan S, Venkatesh Babu R, Nappinai A, Sivaramakrishnan G
    Drug Dev Ind Pharm, 2011 Apr;37(4):436-45.
    PMID: 20923389 DOI: 10.3109/03639045.2010.521161
    Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30-50 mg), ethylcellulose (2-4 mg), microcrystalline cellulose (5-20 mg) and Aerosil® (5-12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated.
    Matched MeSH terms: Silicon Dioxide/administration & dosage
  2. Nurul Atiqah Mustaffa, Nur Hafizah Ab Hamid, Siti Nurehan Abd Jalil
    ESTEEM Academic Journal, 2019;15(1):1-9.
    MyJurnal
    In this study, glucose is used as a template to manufacture microporosity in silica. Based on this objective, five different molar ratios of glucose (0%, 10%, 20%, 30% and 50%) were used for this experiment to maximise its affinity to adsorb oil droplets. The sample has been characterized using
    thermogravimetric analysis (TGA), Nitrogen Adsorption and UltravioletVisible (UV-Vis) pectroscopy. The adsorption of oil was tested in 1000 ppm oil-water emulsion in order to determine the performance of the templated silica. TGA analysis showed that 550 ̊C is a suitable temperature for material calcination for all the samples. N2 adsorption showed the glucose templated silica (50%) had limited porosity, with a low surface area of 2 m2 /g. This is much lower than non-templated silica which was mesoporous, with an average pore diameter of 2.6 nm and a surface area of 272 m2 /g. Interestingly, despite the low porosity of the templated silica, high oil-water
    separations were achieved. This shows that glucose-templated silica is a promising material for oil-water separations.
    Matched MeSH terms: Silicon Dioxide
  3. Siew XC, Chin HC, Sarani Zakaria, Sahrim Ahmad, Siti Masrinda Tasirin
    Sains Malaysiana, 2017;46:167-173.
    Oil palm empty fruit bunch (EFB) fibres were pretreated by gamma irradiation followed by sodium carbonate (Na2
    CO3
    )
    before the acid hydrolysis process to produce reducing sugars using diluted sulphuric acid (H2
    SO4
    ). In this study, EFB
    fibres were irradiated at different doses, i.e. 0, 100 and 200 kGy. Meanwhile, the gamma irradiated sample were then
    subjected to Na2
    CO3 pretreatment with 0 and 5% total titratable alkali (TTA). The effect of the pretreatment using gamma
    irradiation and Na2
    CO3
    on the physical and chemical properties of the EFB fibres and the yield of the reducing sugar
    obtained from the acid hydrolysis process was investigated. The obtained results showed that the content of holocellulose
    was increased significantly with the increase of irradiation doses combined with Na2
    CO3 pretreatment, whereas lignin
    content of the EFB was decreased. The gamma irradiation and Na2
    CO3 pretreatment resulted in structure breakage
    and removal of silica of EFB fibres which can be due to the swelling of the fibres. A synergistic effect between gamma
    irradiation and Na2
    CO3 was observed, in which the yield of reducing sugars was increased by combining the gamma
    irradiation and Na2
    CO3 pretreatment.
    Matched MeSH terms: Silicon Dioxide
  4. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
    Matched MeSH terms: Silicon Dioxide
  5. Yadav VK, Yadav KK, Alam J, Cabral-Pinto MM, Gnanamoorthy G, Alhoshan M, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71766-71778.
    PMID: 34523099 DOI: 10.1007/s11356-021-15009-8
    Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.
    Matched MeSH terms: Silicon Dioxide
  6. Shufang Fan
    Sains Malaysiana, 2017;46:2179-2186.
    In this paper, with debris flow in Zhouqu as the research object, combined with experiments such as cation exchange capacity (CEC), mineral chemical composition and water quality analysis, relation between water and salt in solid source forming debris flow was studied via soil column leaching test and soluble salt analysis, and internal characteristics of debris flow was accordingly showed. It was found that, the soil was loose, and the content of gravel and sand was high, and the content of fine particle was low. The soluble contents at the slope of the accumulation body were described as, collapsed accumulation body > landslide accumulation body, slope toe > slope top, gentle slope > steep slope, also related to length of the slope. The results indicated that accumulations released a large number of base ion after intense weathering, which migrated with water, concentrated and enriched at the slope toe. Saline soil with high salt content collapsed when encountering water and then formed mudflow, thus becoming the internal power to trigger and initiate debris flow to some extent.
    Matched MeSH terms: Silicon Dioxide
  7. Rosli AN, Zabidi NA, Kassim HA, Shrivastava KN
    PMID: 21571582 DOI: 10.1016/j.saa.2011.04.051
    We have calculated the vibrational frequencies of clusters of atoms from the first principles by using the density-functional theory in the local density approximation (LDA). We are also able to calculate the electronic binding energy for all of the clusters of atoms from the optimized structure. We have made clusters of BanOm (n, m=1-6) and have determined the bond lengths, vibrational frequencies as well as intensities in each case. We find that the peroxide cluster BaO2 occurs with the O-O vibrational frequency of 836.3 cm(-1). We also find that a glass network occurs in the material which explains the vibrational frequency of 67 cm(-1). The calculated values agree with those measured from the Raman spectra of barium peroxide and Ba-B-oxide glass. We have calculated the vibrational frequencies of BaO4, GeO4 and SiO4 each in tetrahedral configuration and find that the vibrational frequencies in these systems depend on the inverse square root of the atomic mass.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  8. Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, et al.
    Environ Res, 2023 Apr 01;222:115253.
    PMID: 36702191 DOI: 10.1016/j.envres.2023.115253
    Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
    Matched MeSH terms: Silicon Dioxide/chemistry
  9. Kumar A, Hegde G, Manaf SA, Ngaini Z, Sharma KV
    Chem Commun (Camb), 2014 Oct 28;50(84):12702-5.
    PMID: 25100105 DOI: 10.1039/c4cc04378b
    Porous Carbon Nanoparticles (PCNs) with well-developed microporosity were obtained from bio-waste oil palm leaves (OPL) using single step pyrolysis in nitrogen atmosphere at 500-600 °C in tube-furnace without any catalysis support. The key approach was using silica (SiO2) bodies of OPL as a template in the synthesis of microporous carbon nanoparticles with very small particle sizes of 35-85 nm and pore sizes between 1.9-2 nm.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  10. Sohu S, Bheel N, Jhatial AA, Ansari AA, Shar IA
    Environ Sci Pollut Res Int, 2022 Aug;29(39):58685-58697.
    PMID: 35366210 DOI: 10.1007/s11356-022-19894-5
    Cement production emits a significant carbon dioxide (CO2) gas, dramatically influencing the environment. Furthermore, a large amount of energy is consumed during the cement manufacturing process; since Pakistan is already facing an energy crisis, this high energy consumption by the cement industry puts further stress on Pakistan's energy sector. Hence, the price of cement is rising day by day. Furthermore, waste disposals and concrete ingredients' restoration after demolition have adversative effects on the environment. Therefore, using these wastes decreases cement manufacturing, thereby reducing energy consumption, but it also aids in safeguarding the environment. The study aimed to determine the concrete properties by partially replacing cement with only eggshell powder (ESP) and combining ESP and silica fume (SF) in a ternary binder system in the mixture. However, workability, water absorption, compressive strength, split tensile strength, and flexural strength were all investigated in this study. In this experimental study, cement was replaced as 5, 8, 11, 15, and 20% of ESP, along with 5, 10, and 15% of silica by weight of cement in concrete. Approximately 21 mixes were prepared, from which 01 control mix, 05 mixes of ESP alone, and 15 mixes designed with a blend of ESP and SF with a 1:1.25:3 mix ratio and 0.5 water-cement ratios. Study parameters advocate the substitution of 11% ESP and 10% SF as the optimal option for maximum strength. Furthermore, combining ESP and SF diminishes the composite concrete mixture's workability and dry density greatly.
    Matched MeSH terms: Silicon Dioxide*
  11. Shaharudin Abdul Razak
    A study of the major Arthropoda taxa of invertebrates recolonizing Saraca roots occurring on various substrates and under various water velocities was carried out in the upper reaches of the Gombak River. The sites for the recolonization experiments were selected in the fast and slow flowing sections of rocks and boulders, sand and gravel and mud and silt biotopes. The Hydropsychidae and the Nemouridae were the pioneer recolonizers of Saraea roots in the fast flowing sections of the stream whereas the Ptilodactylidae and the Caenidae were the pioneer recolonizers in the slow flowing sections of the stream.
    Suatu kajian telah dijalankan bagi menentukan takson utama invertebrata Arthropoda yang mengkoloni semula akar Saraca yang didapati pada pelbagai substrat dan pada kelajuan air yang berbeza di bahagian hulu Sungai Gombak. Tapak-tapak untuk ujikaji pengkolonian-semula telah dipilih pada bahagian laju dan perlahan biotop batuan besar dan sederhana, pasir dan batuan kecil, dan lumpur dan kelodak. Hydropsychidae dan Nemouridae adalah pengkoloni perintis pada akar Saraca di bahagian aliran laju sungai sementara Ptilodactylidae dan Caeflidae adalah pengkoloni perintis di bahagian aliran perlahan sungai itu.
    Matched MeSH terms: Silicon Dioxide
  12. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Tengoua FF, et al.
    Biomed Res Int, 2015;2015:396010.
    PMID: 25685787 DOI: 10.1155/2015/396010
    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation.
    Matched MeSH terms: Silicon Dioxide/metabolism*
  13. Sreekantan S, Hassan M, Sundera Murthe S, Seeni A
    Polymers (Basel), 2020 Dec 18;12(12).
    PMID: 33352856 DOI: 10.3390/polym12123034
    A sustainable super-hydrophobic coating composed of silica from palm oil fuel ash (POFA) and polydimethylsiloxane (PDMS) was synthesised using isopropanol as a solvent and coated on a glass substrate. FESEM and AFM analyses were conducted to study the surface morphology of the coating. The super-hydrophobicity of the material was validated through goniometry, which showed a water contact angle of 151°. Cytotoxicity studies were conducted by assessing the cell viability and cell morphology of mouse fibroblast cell line (L929) and hamster lung fibroblast cell line (V79) via tetrazolium salt 3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic methods, respectively. The clonogenic assay was performed on cell line V79 and the cell proliferation assay was performed on cell line L929. Both results validate that the toxicity of PDMS: SS coatings is dependent on the concentration of the super-hydrophobic coating. The results also indicate that concentrations above 12.5 mg/mL invariably leads to cell toxicity. These results conclusively support the possible utilisation of the synthesised super-hydrophobic coating for biomedical applications.
    Matched MeSH terms: Silicon Dioxide
  14. Noorashikin Md Saleh, Sanagi, M. Marsin
    MyJurnal
    A Pressurized Liquid Extraction (PLE) method was developed by using conventional High Performance
    Liquid Chromatography (HPLC). It was found that all of the PAHs have been successfully extracted with dichloromethane-acetone with high percentage recovery. A high temperature of 180°C gave the highest recovery for fluoranthene (94.4%). Meanwhile, fluorene showed the highest recovery at 150 bar, with 94.6% recovery. It is noted that there is no significant day-to-day difference in the efficiency of the developed method, with the R.S.D. values averaging at 0.02. The optimized conditions applied to the soil samples were analysed using the High Temperature High Performance Liquid Chromatography (HT-HPLC) with chromatographic conditions: Octadecylsilyl-silica (ODSsilica) column (100 mm × 4.6 mm I.D.); mobile phase acetonitrile:water 40:60 (v/v); flow rate 2.5 mL/min; temperature 70°C; UV absorbance 254 nm; injection volume 5µL.
    Matched MeSH terms: Silicon Dioxide
  15. Abd Ali LI, Ibrahim WA, Sulaiman A, Kamboh MA, Sanagi MM
    Talanta, 2016 Feb 1;148:191-9.
    PMID: 26653440 DOI: 10.1016/j.talanta.2015.10.062
    This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).
    Matched MeSH terms: Silicon Dioxide
  16. Soutoudehnia Korrani Z, Wan Ibrahim WA, Rashidi Nodeh H, Aboul-Enein HY, Sanagi MM
    J Sep Sci, 2016 Mar;39(6):1144-51.
    PMID: 26768840 DOI: 10.1002/jssc.201500896
    A new mesoporous silica based on the sol-gel material cyanopropyltriethoxysilane (CNPrTEOS) was successfully synthesized by the hydrolysis and condensation of CNPrTEOS in the presence of ammonium solution as catalyst and methanol as solvent. It was used as a solid-phase extraction sorbent for the simultaneous extraction of three organophosphorus pesticides, namely, polar dicrotophos and non-polar diazinon and chlorpyrifos. Analysis was performed using high-performance liquid chromatography with UV detection. CNPrTEOS was characterized by FTIR spectroscopy, field-emission scanning electron microscopy and nitrogen gas adsorption. The surface area and average pore diameter of the optimum sol-gel CNPrTEOS are 379 m(2) /g and 4.7 nm (mesoporous), respectively. The proposed solid-phase extraction based on CNPrTEOS exhibited good linearity in the range of 0.8-100 μg/L, satisfactory precision (1.15-3.82%), high enrichment factor (800) and low limit of detection (0.072-0.091 μg/L). The limits of detection obtained using the proposed solid-phase extraction method are well below the maximum residue limit set by European Union and are also lower (13.6-48.5×) than that obtained by using a commercial CN-SPE cartridge (0.98-4.41 μg/L). The new mesoporous sol-gel CNPrTEOS showed promising alternative as SPE sorbent material for the simultaneous extraction of polar and non-polar organophosphorus pesticides.
    Matched MeSH terms: Silicon Dioxide
  17. Qamar Z, Zeeshan T, Alqahtani WMS, Alanazi A, Khalid Aqeel Almejlad N, Ahmed Khan T, et al.
    Photodiagnosis Photodyn Ther, 2023 Sep;43:103689.
    PMID: 37414110 DOI: 10.1016/j.pdpdt.2023.103689
    AIM: The chief aim of the study was to determine/equate the surface roughness (SRa) and shear bond strength (BS) of pretreated PEEK discs with contemporary air abrasion techniques, photodynamic (PD) therapy by curcumin photosensitizer (PS) and conventional diamond grit straight fissure bur adhered to the composite resin discs.

    MATERIAL AND METHOD: Two hundred discs of PEEK were prepared of 6 mm × 2 mm × 10 mm dimension. The discs were randomly divided into five groups (n = 40) for treatment, Group I: treatment with deionized distilled water (control group); Group II: PD therapy using curcumin PS; Group III: discs treated and abraded with air-borne particles (ABP) silica (30 μm particle size) modified alumina (Al); Group IV: ABP of alumina (110 μm particle size); and Group V: The PEEK were finished with 600-μm grit size straight diamond cutting bur installed in high speed hand-piece. The surface profilometer was used to evaluate the values of surface roughness (SRa) of pretreated PEEK discs. The discs were luted and bonded to discs of composite resin. The bonded PEEK samples were placed in Universal testing machine to evaluate shear BS. The type of BS failure for PEEK discs pre-treated with five regimes respectively was evaluated under stereo-microscope. The data was statistically analyzed using one-way ANOVA and the comparisons between mean values of shear BS were evaluated by Tukey's test (ρ≤0.05).

    RESULTS: The PEEK samples pre-treated with diamond cutting straight fissure burs displayed statistically significant highest value of SRa values (3.258± 0.785 µm). Similarly, the shear BS was observed to be higher for the PEEK discs pre-treated with straight fissure bur (22.37±0.78 MPa). A comparable difference but not statistically significant difference was observed between PEEK discs pre-treated by curcumin PS and ABP-silica modified alumina (ρ ≥ 0.05).

    CONCLUSION: PEEK discs pre-treated with diamond grit straight fissure bur displayed highest values of SRa and shear BS. It was trailed by ABP-Al pre-treated discs; whereas the SRa and shear BS values for the discs pre-treated with ABP-silica modified Al and curcumin PS did not show competitive difference.

    Matched MeSH terms: Silicon Dioxide/chemistry
  18. Shamsuddin MS, Shahari R, Amri CNAC, Tajudin NS, Mispan MR, Salleh MS
    Trop Life Sci Res, 2021 Mar;32(1):83-90.
    PMID: 33936552 DOI: 10.21315/tlsr2021.32.1.5
    This study aimed at determining the effects of propagation medium and cutting types on the early growth performance of fig (Ficus carica L.) root and shoot. The experiment was conducted at the Glasshouse and Nursery Complex (GNC), International Islamic University Malaysia (IIUM). The split-plot design was employed with the main plot (propagation medium) and sub-plot (types of cutting). The propagation medium were sand:topsoil (1:3) (M1), topsoil:peat:sawdust (1:1:1) (M2) and peat:perlite (1:1) (M3). Two types of cutting were semi-hardwood (C1) and hardwood (C2). As a result, there were a significant effect of propagation medium on measured parameters. This study revealed that the most effective propagation medium and cutting types for the propagation of fig were a combination of peat and perlite at 1:1 ratio (M3) and hardwood cutting (C2), respectively as evidenced by significantly higher root and shoot growth quality as compared to other treatments.
    Matched MeSH terms: Silicon Dioxide
  19. Khayoon WS, Saad B, Lee TP, Salleh B
    Food Chem, 2012 Jul 15;133(2):489-96.
    PMID: 25683424 DOI: 10.1016/j.foodchem.2012.01.010
    A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE® multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith® performance RP-18e (100-4.6mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38-104.5% and RSDs were <4.4%. The method was applied to the determination of aflatoxins in peanut (9), rice (5) and chilli (10) samples. Liquid chromatography-tandem mass spectrometry analysis using triple quadruple analyser and operated in the multiple reaction monitoring modes on the contaminated samples was performed for confirmation.
    Matched MeSH terms: Silicon Dioxide
  20. Saaid M, Saad B, Rahman IA, Ali AS, Saleh MI
    Talanta, 2010 Jan 15;80(3):1183-90.
    PMID: 20006072 DOI: 10.1016/j.talanta.2009.09.006
    Three sorbent materials (A18C6-MS, DA18C6-MS and AB18C6-MS) based on the crown ether ligands, 1-aza-18-crown-6, 1,4,10,13-tetraoxa-7,16-diazacyclo octadecane and 4'-aminobenzo-18-crown-6, respectively, were prepared by the chemical immobilization of the ligand onto mesoporous silica support. The sorbents were characterized by FT-IR, scanning electron microscopy-energy dispersive X-ray microanalysis, elemental analysis and nitrogen adsorption-desorption test. The applicability of the sorbents for the extraction of biogenic amines by the batch sorption method was extensively studied and evaluated as a function of pH, biogenic amines concentration, contact time and reusability. Under the optimized conditions, all the sorbents exhibited highest selectivity toward spermidine (SPD) compared to other biogenic amines (tryptamine, putrescine, histamine and tyramine). Among the sorbents, AB18C6-MS offer the highest capacity and best selectivity towards SPD in the presence of other biogenic amines. The AB18C6-MS sorbent can be repeatedly used three times as there was no significant degradation in the extraction of the biogenic amines (%E>85). The optimized procedure was successfully applied for the separation of SPD in food samples prior to the reversed-phase high performance liquid chromatography separation.
    Matched MeSH terms: Silicon Dioxide/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links