Displaying publications 61 - 80 of 365 in total

Abstract:
Sort:
  1. Shen S, Deng L, Du Y, Gao J, Zhang C, Wang Y, et al.
    Int J Pharm, 2022 Dec 15;629:122385.
    PMID: 36375685 DOI: 10.1016/j.ijpharm.2022.122385
    Wound dressings can be applied over the wound sites to provide long-lasting wound management and improve wound healing. Biological wound dressings are superior to synthetic materials due to biodegradability and biocompatibility. These biomaterials have demonstrated huge potential in the field of wound dressings. Applying bibliometric analysis combined with results-based descriptions to characterize the research status, hotspots, and cutting-edge topics, this study is the first in-depth qualitative, quantitative, data-driven overview of biological wound dressings research in recent decades. Filtered data were used to construct co-citation, heatmaps, bi-clustering, strategy maps, and other analyses and visualization. The results show that research on biological wound dressings has progressed considerably in the last 5 years with extensive global collaboration. A clear knowledge base has been developed. Chitosan hydrogels, bacterial cellulose, active agents (silver nanoparticles, growth factors, curcumin, etc.), and electrospinning fibers stand out as research hotspots. The research frontiers include novel starting materials, precise and controlled release systems, and clinical and regenerative medicine applications. We interpreted an overview of the excavated topics and expected the findings here to provide a guide and inspire innovations for developing the next generation wound dressings.
    Matched MeSH terms: Silver
  2. Sharma C, Ansari S, Ansari MS, Satsangee SP, Srivastava MM
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111153.
    PMID: 32806256 DOI: 10.1016/j.msec.2020.111153
    In present work, we demonstrate a single step environmentally benign approach to synthesize Au/Ag bimetallic nanoparticles (BMNPs) using aqueous extract of Clove buds for the first time. Clove bud's (CB) extract has proficiency to act as a reducing and stabilizing agent for the formation of Au/Ag BMNPs. In presence of extract, AuIII and AgI are reduced competitively within same solution and produce Au/Ag alloy NPs. The kinetics besides the formation of NPs was studied using UV-visible spectroscopy and efficiency of the extract was monitored by varying contact time, temperature, pH and extract concentration. The electron microscopic studies revealed the presence of NPs with peculiar morphology at alkaline pH. Further, the existence of Au and Ag atoms was investigated using energy dispersive X-ray (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV) techniques. Fourier transform infrared spectroscopy (FTIR) showed that Eugenol in the extract is mainly responsible for the production of NPs which are also surrounded by various phytochemicals. Zeta potential of all the NPs is found to be negative which prevents their agglomeration due to inter-repulsion and the biosynthesized Au/Ag BMNPs revealed greater catalytic efficiency for the degradation of methyl orange (MO), methylene blue (MB) and reduction of p-nitrophenol (p-NP). Significant enhancement induced by BMNPs compared to individual monometallic nanoparticles (MMNPs) was assigned to the synergistic effect of MMNPs and coating of phytochemicals present in the CB extract.
    Matched MeSH terms: Silver
  3. Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, et al.
    Environ Geochem Health, 2024 Feb 17;46(3):92.
    PMID: 38367085 DOI: 10.1007/s10653-024-01871-1
    A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
    Matched MeSH terms: Silver/chemistry
  4. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Silver/chemistry*
  5. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al.
    Int J Mol Sci, 2012;13(6):6639-50.
    PMID: 22837654 DOI: 10.3390/ijms13066639
    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
    Matched MeSH terms: Silver/chemistry*
  6. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Silver/pharmacology*; Silver/chemistry*
  7. Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA
    Int J Nanomedicine, 2011;6:581-90.
    PMID: 21674015 DOI: 10.2147/IJN.S17112
    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications.
    Matched MeSH terms: Silver/pharmacology; Silver/chemistry*
  8. Shameli K, Ahmad MB, Yunus WZ, Ibrahim NA, Darroudi M
    Int J Nanomedicine, 2010;5:743-51.
    PMID: 21042420 DOI: 10.2147/IJN.S13227
    In this study, silver nanoparticles (Ag-NPs) were synthesized using the wet chemical reduction method on the external surface layer of talc mineral as a solid support. Silver nitrate and sodium borohydride were used as the silver precursor and reducing agent in talc. The talc was suspended in aqueous AgNO(3) solution. After the absorption of Ag(+) on the surface, the ions were reduced with NaBH(4). The interlamellar space limits were without many changes (d(s) = 9.34-9.19 A(º)); therefore, Ag-NPs formed on the exterior surface of talc, with d(ave) = 7.60-13.11 nm in diameter. The properties of Ag/talc nanocomposites (Ag/talc-NCs) and the diameters of the Ag-NPs prepared in this way depended on the primary AgNO(3) concentration. The prepared Ag-NPs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared. These Ag/talc-NCs may have potential applications in the chemical and biological industries.
    Matched MeSH terms: Silver*
  9. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
    Matched MeSH terms: Silver/pharmacology; Silver/chemistry*
  10. Shameli K, Ahmad MB, Yunus WM, Ibrahim NA, Rahman RA, Jokar M, et al.
    Int J Nanomedicine, 2010 Sep 07;5:573-9.
    PMID: 20856832
    In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller-Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application.
    Matched MeSH terms: Silver/administration & dosage; Silver/pharmacology*
  11. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Silver/chemistry*
  12. Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, et al.
    Int J Nanomedicine, 2010 Oct 22;5:875-87.
    PMID: 21116328 DOI: 10.2147/IJN.S13632
    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.
    Matched MeSH terms: Silver/administration & dosage*; Silver/chemistry
  13. Shameli K, Ahmad MB, Yunus WM, Ibrahim NA, Gharayebi Y, Sedaghat S
    Int J Nanomedicine, 2010 Dec 01;5:1067-77.
    PMID: 21170354 DOI: 10.2147/IJN.S15033
    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO(3) solution, and after the absorption of silver ions, Ag(+) was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [d(s)] = 1.24-1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57-30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation.
    Matched MeSH terms: Silver/chemistry*
  14. Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al.
    PLoS One, 2015;10(3):e0119726.
    PMID: 25747867 DOI: 10.1371/journal.pone.0119726
    Particle size and surface chemistry are potential determinants of silver nanoparticle (AgNP) respiratory toxicity that may also depend on the lung inflammatory state. We compared the effects of intratracheally-administered AgNPs (20 nm and 110 nm; polyvinylpyrrolidone (PVP) and citrate-capped; 0.1 mg/Kg) in Brown-Norway (BN) and Sprague-Dawley (SD) rats. In BN rats, there was both a neutrophilic and eosinophilic response, while in SD rats, there was a neutrophilic response at day 1, greatest for the 20 nm citrate-capped AgNPs. Eosinophilic cationic protein was increased in bronchoalveolar lavage (BAL) in BN and SD rats on day 1. BAL protein and malondialdehyde levels were increased in BN rats at 1 and 7 days, and BAL KC, CCL11 and IL-13 levels at day 1, with increased expression of CCL11 in lung tissue. Pulmonary resistance increased and compliance decreased at day 1, with persistence at day 7. The 20 nm, but not the 110 nm, AgNPs increased bronchial hyperresponsiveness on day 1, which continued at day 7 for the citrate-capped AgNPs only. The 20 nm versus the 110 nm size were more proinflammatory in terms of neutrophil influx, but there was little difference between the citrate-capped versus the PVP-capped AgNPs. AgNPs can induce pulmonary eosinophilic and neutrophilic inflammation with bronchial hyperresponsiveness, features characteristic of asthma.
    Matched MeSH terms: Silver/toxicity*
  15. Schönrath I, Tsvetkov VB, Zatsepin TS, Aralov AV, Müller J
    J Biol Inorg Chem, 2019 08;24(5):693-702.
    PMID: 31263954 DOI: 10.1007/s00775-019-01682-1
    1,3-Diaza-2-oxophenoxazine (X) has been introduced as a ligand in silver(I)-mediated base pairing in a parallel DNA duplex. This fluorescent cytosine analog is capable of forming stabilizing X-Ag(I)-X and X-Ag(I)-C base pairs in DNA duplexes, as confirmed by temperature-dependent UV spectroscopy and luminescence spectroscopy. DFT calculations of the silver(I)-mediated base pairs suggest the presence of a synergistic hydrogen bond. Molecular dynamics (MD) simulations of entire DNA duplexes nicely underline the geometrical flexibility of these base pairs, with the synergistic hydrogen bond facing either the major or the minor groove. Upon silver(I) binding to the X:X or X:C base pairs, the luminescence emission maximum experiences a red shift from 448 to 460 nm upon excitation at 370 nm. Importantly, the luminescence of the 1,3-diaza-2-oxophenoxazine ligand is not quenched significantly upon binding a silver(I) ion. In fact, the luminescence intensity even increases upon formation of a X-Ag(I)-C base pair, which is expected to be beneficial for the development of biosensors. As a consequence, the silver(I)-mediated phenoxazinone base pairs represent the first strongly fluorescent metal-mediated base pairs.
    Matched MeSH terms: Silver/chemistry*
  16. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
    Matched MeSH terms: Silver/chemistry*
  17. Sarsaifi K, Haron AW, Vejayan J, Yusoff R, Hani H, Omar MA, et al.
    Theriogenology, 2015 Oct 1;84(6):956-68.
    PMID: 26119476 DOI: 10.1016/j.theriogenology.2015.05.035
    The present study evaluated the relationship between Bali bull (Bos javanicus) seminal plasma proteins and different semen quality parameters. Semen samples from 10 mature Bali bulls were evaluated for conventional semen parameters (general motility, viability, and normal morphology), sperm functionality (acrosome reaction, sperm penetration rate, sperm penetration index), sperm kinetics (computer-assisted semen analysis parameters such as sperm velocity), and sperm morphology (acrosome and membrane integrity). Frozen-thawed semen with higher sperm motility, viability, acrosome integrity, and membrane integrity (P < 0.05) are consistently higher in acrosome reaction and sperm penetration assay. Three bulls showed the highest, four bulls displayed the medium, and the remaining three bulls showed the lowest for all sperm parameters and SPA. The proteome maps of seminal plasma from high-quality and low-quality Bali bulls were also established. Seminal plasma of both high-quality and low-quality Bali bulls was subjected to two-dimensional SDS-PAGE with isoelectric point ranged from 3 to 10 and molecular weight from 10 to 250 kDa. Approximately 116 spots were detected with Blue Silver stain, and of these spots, 29 were selected and identified by MALDI-TOF/TOF-MS/MS. A majority of the proteins visualized in the seminal plasma two-dimensional maps was successfully identified. An essential group of the identified spots represented binder of sperm 1 (BSP1), clusterin, spermadhesin, tissue inhibitor of metalloproteinases 2 (TIMP-2), and phospholipase A2 (PLA2). Other proteins found in high abundance included seminal ribonuclease, serum albumin, cationic trypsin, and peptide similar to β2 microglobulin. Thus, a reference map of Bali bull seminal plasma proteins has been generated for the very first time and can be used to relate protein pattern changes to physiopathologic events that may influence Bali bull reproductive performance.
    Matched MeSH terms: Silver
  18. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al.
    PLoS One, 2015;10(11):e0143077.
    PMID: 26580078 DOI: 10.1371/journal.pone.0143077
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
    Matched MeSH terms: Silver/toxicity*
  19. Sarjidan MAM, Shuhaimi A, Majid WHA
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):6995-7003.
    PMID: 31039852 DOI: 10.1166/jnn.2019.16724
    A simple spin-coating process for fabricating vertical organic light-emitting transistors (VOLETs) is realized by utilizing silver nanowire (AgNW) as a source electrode. The optical, electrical and morphological properties of the AgNW formation was initially optimized, prior VOFET fabrication. A high molecular weight of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] MEH-PPV was used as an organic semiconductor layer in the VOFET in forming a multilayer structure by solution process. It was found that current density and luminance intensity of the VOLET can be modulated by a small magnitude of gate voltage. The modulation process was induced by changing an injection barrier via gate voltage bias. A space-charge-limited current (SCLC) approach in determining transistor mobility has been introduced. This preliminary and fundamental work is beneficial towards all-solution processing display devices.
    Matched MeSH terms: Silver
  20. Samuggam S, Chinni SV, Mutusamy P, Gopinath SCB, Anbu P, Venugopal V, et al.
    Molecules, 2021 May 03;26(9).
    PMID: 34063685 DOI: 10.3390/molecules26092681
    Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.
    Matched MeSH terms: Silver
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links