Displaying publications 821 - 840 of 2185 in total

Abstract:
Sort:
  1. Choo SJ, Chang CT, Lee JCY, Munisamy V, Tan CK, Raj JD, et al.
    J Infect Dev Ctries, 2018 11 30;12(11):960-969.
    PMID: 32012125 DOI: 10.3855/jidc.10723
    INTRODUCTION: Inappropriate use of antibiotics has led to antimicrobial resistance, a major public health challenge worldwide. This study aimed to explore beliefs, knowledge, and practice on antibiotic use among general public.

    METHODOLOGY: Cross-sectional study was conducted at 13 hospitals and 44 primary health clinics in Perak from May to July 2017. Adults above 18 years, literate, and had experience in antibiotics consumption were selected through sequential sampling method. Data was collected using a self-administered questionnaire which included the three study domains i.e. belief, knowledge and practice. The questionnaire was pilot on 30 subjects.

    RESULTS: Out of 2850 distributed questionnaires, 2773 returned and 2632 were included for analysis. Mean age of the respondents was 39.7 ± 14.5 years old. Most respondents were female (58.6%), Malay (74.7%) and underwent upper secondary school (45.6%). Mean score were generated for each domain with belief: 5.87 ± 3.00 (total score: 12), knowledge: 15.82 ± 3.85 (total score: 24), practice: 6.91 ± 2.07 (total score: 12). In the belief domain, 63.2% of respondents believed that antibiotics would help them to recover faster. In the knowledge domain, 52.7% of respondents inappropriately thought that antibiotics could work on viral infections. In the practice domain, 70% of respondents expected doctors to prescribe antibiotics if suffered from symptoms.

    CONCLUSION: Majority of the respondents expect doctors to prescribe antibiotics for their illness, and most believes that antibiotics can speed up recovery of illness. Lack of awareness on antibiotic resistance was found to be a significant factor associated with inappropriate antibiotic use.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  2. Thilaga R, Ganesh R, Valuyeetham KA
    Med J Malaysia, 2019 12;74(6):509-512.
    PMID: 31929477
    BACKGROUND: This is a descriptive study of in-patient paediatric population with the diagnosis of neck abscess. The objective of this study was to calculate the number of children who require conservative (antibiotic) management compared to surgery for neck abscess. A second objective was to identify the factors influencing the choice of the treatments selected.

    METHODS: A retrospective review was performed on a group of paediatric population aged 0 till 12 years of age, with a history of admission to paediatric ENT ward from the year 2010 till 2015 in HTJS. Initially, 69 children with the diagnoses of various neck infections were identified. Then, the sample amount was narrowed to 30 patients with neck abscesses only.

    RESULTS: The data analysis was performed using descriptive statistics, Chi-squared test and Fisher's exact test. Twentyfive out of the 30 patients required operative drainage of abscess (83.3%). In this group, children aged ≤2 years old were the largest group to have undergone surgical drainage. Only five patients were successfully treated with antibiotic therapy alone. Nineteen children came only after developing neck swelling for more than a week, in which 18 of them required surgery.

    CONCLUSION: Younger group of children are more likely to undergo surgical drainage than older children for neck abscess. Also, children who came in after two weeks of symptoms have a higher probablity of requiring surgery than antbiotic alone. Nonetheless, every child who comes in with neck abscess should be evaluated and treated early to avoid any sinister complications.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  3. Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS
    J Orthop Surg (Hong Kong), 2019 2 26;27(1):2309499018822247.
    PMID: 30798727 DOI: 10.1177/2309499018822247
    PURPOSE: Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier.

    METHODS: Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar.

    RESULTS: With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA.

    CONCLUSION: JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.

    Matched MeSH terms: Anti-Bacterial Agents/analysis
  4. Long CM, Tang K, Chokshi H, Fotaki N
    AAPS PharmSciTech, 2019 Feb 13;20(3):113.
    PMID: 30761437 DOI: 10.1208/s12249-019-1317-z
    The aim of this study is to investigate the dissolution properties of poorly soluble drugs from their pure form and their amorphous formulation under physiological relevant conditions for oral administration based on surface dissolution ultraviolet (UV) imaging. Dissolution of two poorly soluble drugs (cefuroxime axetil and itraconazole) and their amorphous formulations (Zinnat® and Sporanox®) was studied with the Sirius Surface Dissolution Imager (SDI). Media simulating the fasted state conditions (compendial and biorelevant) with sequential media/flow rate change were used. The dissolution mechanism of cefuroxime axetil in simulated gastric fluid (SGF), fasted state simulated gastric fluid (FaSSGF) and simulated intestinal fluid (SIF) is predominantly swelling as opposed to the convective flow in fasted state simulated intestinal fluid (FaSSIF-V1), attributed to the effect of mixed micelles. For the itraconazole compact in biorelevant media, a clear upward diffusion of the dissolved itraconazole into the bulk buffer solution is observed. Dissolution of itraconazole from the Sporanox® compact is affected by the polyethylene glycol (PEG) gelling layer and hydroxypropyl methylcellulose (HPMC) matrix, and a steady diffusional dissolution pattern is revealed. A visual representation and a quantitative assessment of dissolution properties of poorly soluble compounds and their amorphous formulation can be obtained with the use of surface dissolution imaging under in vivo relevant conditions.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  5. Yao Ang C, Sano M, Dan S, Leelakriangsak M, M Lal T
    Biocontrol Sci, 2020;25(1):1-7.
    PMID: 32173662 DOI: 10.4265/bio.25.1
    Aquaculture is developing so fast that infectious disease outbreak happens regularly. Antibiotic treatment results in development of antibiotic resistance pathogens, thus cause urgent action in searching of other alternative treatment method. Postbiotic was one of the explored strategies among various proposed alternatives. Due to its benefits in agriculture industry, it may be useful in aquaculture industry. Although many reviews were reported on other alternative strategies, the review on postbiotic in aquaculture is limited. This mini review provides an overview of different postbiotics as aquaculture disease control agents. Peptides and exopolysaccharides have antimicrobial properties against bacterial pathogens. Then, short chain fatty acids have both antimicrobial activities against bacterial pathogens and immunostimulating effects to aquatic organism. Vitamins, peptidoglycan and lipopolysaccharide are reported as immunostimulants. Finally, cell surface proteins and teichoic acid can act as vaccine.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  6. Thornber K, Huso D, Rahman MM, Biswas H, Rahman MH, Brum E, et al.
    Glob Health Action, 2019;12(sup1):1734735.
    PMID: 32153258 DOI: 10.1080/16549716.2020.1734735
    One of the key strategic objectives of the World Health Organisation's global antimicrobial resistance (AMR) action plan is to improve public awareness and understanding of this issue. Very few AMR awareness campaigns have targeted the animal production sector, particularly in low- and middle-income countries (LMICs) where rural communities can be geographically difficult to access via traditional face-to-face community engagement methods. Aquaculture is a major food production industry in Bangladesh and across Asia, an area which poses a significant risk to global AMR dissemination. In this pilot study, we sought to investigate the potential for digital communication materials to rapidly and effectively communicate AMR messages to rural aquaculture farmers in Bangladesh. Working with stakeholders from the Bangladesh aquaculture industry, we developed a 4-minute digital animation designed specifically for this audience and assessed its capacity to engage and communicate AMR messages to farmers. We then conducted a small-scale social media campaign, to determine the potential for rapidly disseminating AMR awareness materials to a large audience across Bangladesh, where there is an extensive 4 G internet network and an ever-increasing proportion of the population (57% as of December 2019) have mobile internet access. Thirty-six farmers were surveyed: all of them liked this method of communication and 97% said it would change the way they use antibiotics in the future. Through the social media campaign, the animation received 9,100 views in the first 2 weeks alone. Although preliminary, these results demonstrate the huge potential for digital communication methods for the rapid and widespread communication of AMR awareness materials to rural aquaculture communities in Bangladesh and across Asia. Our results support the need for more research into the most appropriate and effective content of AMR awareness campaigns for aquaculture communities and question the need for explaining the science underlying AMR in such communication materials.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  7. Chia PY, Sengupta S, Kukreja A, S L Ponnampalavanar S, Ng OT, Marimuthu K
    PMID: 32046775 DOI: 10.1186/s13756-020-0685-1
    Infections by multidrug-resistant (MDR) Gram-negative organisms (GN) are associated with a high mortality rate and present an increasing challenge to the healthcare system worldwide. In recent years, increasing evidence supports the association between the healthcare environment and transmission of MDRGN to patients and healthcare workers. To better understand the role of the environment in transmission and acquisition of MDRGN, we conducted a utilitarian review based on literature published from 2014 until 2019.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Saleem S, Iqbal A, Hasnain S
    Trop Biomed, 2020 Jun 01;37(2):482-488.
    PMID: 33612817
    Bacterial mediated Silver nanoparticles is considered as an emerging Ecofriendly approach to eradicate human pathogens. This paper aims to provide the biological approach for the synthesis of silver nanoparticles from indigenously isolated bacteria. This study will be beneficial to control the nosocomial infections triggered by MRSA (Methicillin-resistant Staphylococcus aureus). The current study is the extracellular synthesis of silver nanoparticles by using the cell free filtrate of bacterial strains isolated from the soil. The optimization study was also carried out to obtain the maximum production of silver nanoparticles. Nanoparticles were confirmed and characterized by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM) having the plasmon resonance peak between 420-450nm with 10-60nm in size range and most were spherical in shape. Synthesized silver nanoparticles showed a potential antibacterial activity against MRSA (Methicillin Resistant Staphylococcus aureus) in-vitro study. This is the green approach for the production of AgNPs, as there was no previous work done on the synthesis of silver nanoparticles by bacteria in this region of Southern Punjab, Pakistan and these nanoparticles can be used to treat nosocomial infection. These silver nanoparticles can be used in effective disease management as antimicrobial agent.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  9. Swain A, Gnanasekar P, Prava J, Rajeev AC, Kesarwani P, Lahiri C, et al.
    Microb Drug Resist, 2021 Feb;27(2):212-226.
    PMID: 32936741 DOI: 10.1089/mdr.2020.0161
    Many members of nontuberculous mycobacteria (NTM) are opportunistic pathogens causing several infections in animals. The incidence of NTM infections and emergence of drug-resistant NTM strains are rising worldwide, emphasizing the need to develop novel anti-NTM drugs. The present study is aimed to identify broad-spectrum drug targets in NTM using a comparative genomics approach. The study identified 537 core proteins in NTM of which 45 were pathogen specific and essential for the survival of pathogens. Furthermore, druggability analysis indicated that 15 were druggable among those 45 proteins. These 15 proteins, which were core proteins, pathogen-specific, essential, and druggable, were considered as potential broad-spectrum candidates. Based on their locations in cytoplasm and membrane, targets were classified as drug and vaccine targets. The identified 15 targets were different enzymes, carrier proteins, transcriptional regulator, two-component system protein, ribosomal, and binding proteins. The identified targets could further be utilized by researchers to design inhibitors for the discovery of antimicrobial agents.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  10. Thong KS, Chang CT, Lee M, Lee JCY, Tan HS, Shafie AA
    Antimicrob Resist Infect Control, 2021 02 04;10(1):29.
    PMID: 33541440 DOI: 10.1186/s13756-021-00892-0
    BACKGROUND: Antibiotic resistance is a major public health concern, accelerated by antibiotic overuse. Inadequate knowledge among the public has been associated with inappropriate use of antibiotics. This study determined the impact of a self-developed educational leaflet for addressing specific knowledge gaps in antibiotic use among the public.

    METHODS: This was an experimental study conducted at five hospitals and 20 primary health care clinics in the state of Perak. Adults over 18 years of age were recruited using sequential sampling. The first phase of data collection consisted of a pre-intervention assessment, an educational session, and an immediate post-intervention assessment. Each educational session was conducted by trained pharmacists and lasted approximately 15 min for each participant. A two-week post-intervention assessment was then conducted via a phone call to re-assess the participants using the same questionnaire.

    RESULTS: Out of 300 questionnaires distributed, 234 were completed for our study. The mean age of participants was 40.7 ± 14.6 years old. Most of the respondents were female (143, 61.1%), Malay (162, 69.2%), and had tertiary education (162, 69.2%). A mean score was generated for each domain, with knowledge towards antibiotic resistance: 2.83 ± 1.28 pre-intervention, 3.76 ± 0.62 immediate post-intervention, and 3.67 ± 0.78 two-weeks post-intervention (total score: 4.00); knowledge towards antibiotic use: 2.03 ± 1.56 pre-intervention, 4.56 ± 1.46 immediate post-intervention, and 4.32 ± 1.48 two-weeks post-intervention (total score: 6.00); perception towards antibiotic use: 2.83 ± 1.38 pre-intervention, 4.25 ± 1.06 immediate post-intervention, and 4.22 ± 1.02 two-weeks post-intervention (total score: 5.00). Significant improvement in the mean scores were found before and after intervention in all domains (p 

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  11. Sultan S, Irfan SM, Kaker J, Hasan M
    Med J Malaysia, 2016 04;71(2):53-6.
    PMID: 27326941
    BACKGROUND: The effect of Helicobacter-pylori eradication therapy on the platelet counts in patients with immune thrombocytopenia is still debatable. The aim of this study was to assess the response rates of standard triple eradication therapy in secondary immune thrombocytopenia with Helicobacter pylori infection.

    METHODS: From January 2012 to December 2013, 197 patients were diagnosed to have immune thrombocytopenia, out of which 22(11.1%) patients infected with Helicobacter- Pylorus were enrolled in this study. Helicobacter-Pylori infection was documented by Helicobacter-pylori stool antigen enzyme immunoassay method. All positive patients were put on triple eradication therapy. The responses rates to treatment were defined as per International Working Group on ITP.

    RESULTS: Mean age of patients was 43.18±12.5 years. There were 10(45.5%) males and 12 (54.5%) females. Of the 22 patients, 7(31.8%) exhibited a complete response (CR) to Hpylori eradication therapy; 10(45.4%) attained a response; and 5(22.7%) had no response. Mean base line platelet counts were 53.36±24.5x109/l, while platelet counts at 4 week following eradication was 80.86±51.0x109/l (P=0.003). The predictive factor of response following eradication therapy was baseline platelet counts. Virtually all responders had baseline platelet counts >30x109/l and all non-responders had <30x109/l of platelet counts.

    CONCLUSIONS: Though the prevalence of H-pylori is low, this study confirmed the efficacy of eradication in increasing the platelet counts in H-pylori positive patients with ITP. It is an important measure in short time, safe and very cost effective to achieve platelets increment. We endorse the routine detection and eradication treatment of H-pylori infective ITP patients.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  12. Mlambo LK, Abbasiliasi S, Tang HW, Ng ZJ, Parumasivam T, Hanafiah KM, et al.
    Curr Microbiol, 2022 Oct 17;79(12):359.
    PMID: 36251092 DOI: 10.1007/s00284-022-03038-6
    This study aims to evaluate the effects of bioactive metabolites produced by lactic acid bacteria against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. A total of six lactic acid bacteria (LAB) were selected to evaluate the antimicrobial activity against MRSA ATCC 43300, a skin pathogen that is highly resistant to most antibiotics. The K014 isolate from a fermented vegetable recorded the highest inhibition against MRSA ATCC 43300 at 91.93 ± 0.36%. 16S rRNA sequencing revealed the K014 isolate is closely related to L. plantarum and the sequence was subsequently deposited in the GenBank database with an accession number of MW180960, named as Lactiplantibacillus plantarum K014. The cell-free supernatant (CFS) of L. plantarum K014 had tolerance to high temperature as well as acidic pH. The bioactive metabolites, such as hydrogen peroxide, lactic acid and hyaluronic acid, were produced by L. plantarum K014. Result from ABTS assay showed higher antioxidant activity (46.28%) as compared to that obtained by DPPH assay (2.97%). The CFS had showed anti-inflammatory activity for lipoxygenase (LOX) assay at 43.66%. The bioactive metabolites of L. plantarum K014 showed very promising potential to be used topical skin pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. AlMatar M, Albarri O, Makky EA, Köksal F
    Pharmacol Rep, 2021 Feb;73(1):1-16.
    PMID: 32946075 DOI: 10.1007/s43440-020-00160-9
    The discovery of antibiotics ought to have ended the issue of bacterial infections, but this was not the case as it has led to the evolution of various mechanisms of bacterial resistance against various antibiotics. The efflux pump remains one of the mechanisms through which organisms develop resistance against antibiotics; this is because organisms can extrude most of the clinically relevant antibiotics from the interior cell environment to the exterior environment via the efflux pumps. Efflux pumps are thought to contribute significantly to biofilm formation as highlighted by various studies. Therefore, the inhibition of these efflux pumps can be a potential way of improving the activity of antibiotics, particularly now that the discovery of novel antibiotics is becoming tedious. Efflux pump inhibitors (EPIs) are molecules that can inhibit efflux pumps; they have been considered potential therapeutic agents for rejuvenating the activity of antibiotics that have already lost their activity against bacteria. However, studies are yet to determine the specific substrates for such pumps; the effect of altered efflux activity of these pumps on biofilm formation is still being investigated. A clear knowledge of the involvement of efflux pumps in biofilm development could aid in developing new agents that can interfere with their function and help to prevent biofilms formation; thereby, improving the outcome of treatment strategies. This review focuses on the novel update of EPIs and discusses the evidence of the roles of efflux pumps in biofilm formation; the potential approaches towards overcoming the increasing problem of biofilm-based infections are also discussed.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  14. Chan EWL, Chin MY, Low YH, Tan HY, Ooi YS, Chong CW
    Microb Drug Resist, 2021 Aug;27(8):1018-1028.
    PMID: 33325795 DOI: 10.1089/mdr.2020.0311
    Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  15. Wright H, Harris PNA, Chatfield MD, Lye D, Henderson A, Harris-Brown T, et al.
    Trials, 2021 Dec 07;22(1):889.
    PMID: 34876196 DOI: 10.1186/s13063-021-05870-w
    BACKGROUND: Increasing rates of antibiotic resistance in Gram-negative organisms due to the presence of extended-spectrum beta-lactamases (ESBL), hyperproduction of AmpC enzymes, carbapenemases and other mechanisms of resistance are identified in common hospital- and healthcare-associated pathogens including Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Cefiderocol is a novel siderophore cephalosporin antibiotic with a catechol moiety on the 3-position side chain. Cefiderocol has been shown to be potent in vitro against a broad range of Gram-negative organisms, including carbapenem-resistant Enterobacteriaceae (CRE) and multi-drug-resistant (MDR) P. aeruginosa and A. baumannii. Recent clinical data has shown cefiderocol to be effective in the setting of complicated urinary tract infections and nosocomial pneumonia, but it has not yet been studied as treatment of bloodstream infection.

    METHODS: This study will use a multicentre, open-label non-inferiority trial design comparing cefiderocol and standard of care antibiotics. Eligible participants will be adult inpatients who are diagnosed with a bloodstream infection with a Gram-negative organism on the basis of a positive blood culture result where the acquisition meets the definition for healthcare-associated or hospital-acquired. It will compare cefiderocol with the current standard of care (SOC) antibiotic regimen according to the patient's treating clinician. Eligible participants will be randomised 1:1 to cefiderocol or SOC and receive 5-14 days of antibiotic therapy. Trial recruitment will occur in at least 20 sites in ten countries (Australia, Malaysia, Singapore, Thailand, Turkey and Greece). The sample size has been derived from an estimated 14 day, all-cause mortality rate of 10% in the control group, and a non-inferiority margin of 10% difference in the two groups. A minimum of 284 patients are required in total to achieve 80% power with a two-sided alpha level of 0.05. Data describing demographic information, risk factors, concomitant antibiotics, illness scores, microbiology, multidrug-resistant organism screening, discharge and mortality will be collected.

    DISCUSSION: With increasing antimicrobial resistance, there is a need for the development of new antibiotics with broad activity against Gram-negative pathogens such as cefiderocol. By selecting a population at risk for multi-drug-resistant pathogens and commencing study treatment early in the clinical illness (within 48 h of index blood culture) the trial hopes to provide guidance to clinicians of the efficacy of this novel agent.

    TRIAL REGISTRATION: The GAME CHANGER trial is registered under the US National Institute of Health ClinicalTrials.gov register, reference number NCT03869437 . Registered on March 11, 2019.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  16. Chung PY, Khoo REY, Liew HS, Low ML
    Ann Clin Microbiol Antimicrob, 2021 Sep 24;20(1):67.
    PMID: 34560892 DOI: 10.1186/s12941-021-00473-4
    BACKGROUND: Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line.

    METHODS: The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay.

    RESULTS: The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells.

    CONCLUSION: Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  17. Subramaniam K, Khaithir TMN, Ding CH, Che Hussin NS
    Malays J Pathol, 2021 Aug;43(2):291-301.
    PMID: 34448793
    BACKGROUND: Bloodstream infection (BSI) is a major cause of morbidity and mortality. The classification of infection into community-acquired, hospital-acquired, and healthcare-associated infection provides an educated guess on the possible aetiological agents and appropriate empirical antimicrobial therapy to be instituted. This study aims to determine the aetiological agents, the antimicrobial susceptibility patterns, and the classification of infections among the paediatric population.

    MATERIALS & METHODS: This study was conducted in Hospital Kuala Lumpur, Malaysia from January 2016 to December 2017. A total of 303 isolates were included in this study which was obtained from 238 patients. The patients' microbiological worksheets and medical notes were reviewed to determine the antimicrobial susceptibility patterns, demographic data, classification of infection, and outcome (survival versus death).

    RESULTS: Most of the patients were in the age group of one to less than five years old (41%) with 58% male and 85% Malay patients. Common causes of BSI were Staphylococcus aureus (17%), followed by Klebsiella pneumoniae (15%), Acinetobacter baumanii (10%), Pseudomonas aeruginosa (10%), and Escherichia coli (6%). Sixty percent of BSI episodes were caused by gram-negative bacteria, 34% by gram-positive bacteria, and 6% by fungi. Most of the infections were classified as hospital-acquired infections (72%), followed by healthcareassociated (20%) and community-acquired infections (8%). There were 33% of methicillin-resistant Staphylococcus aureus, 53% of extended-spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae, and 33% ESBL producing Escherichia coli. The overall case fatality rate (CFR) was 27% with the highest CFR caused by Serratia marcescens (53.3%).

    CONCLUSIONS: The majority of paediatric bloodstream infections are hospital-acquired. Improvement in prevention strategies and revisions in antibiotic policies are important to overcome it.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  18. Chung PY
    Curr Drug Targets, 2018;19(7):832-840.
    PMID: 28891454 DOI: 10.2174/1389450118666170911114604
    BACKGROUND: Bacterial resistance to antibiotics is one of the most serious challenge to global public health. The introduction of new antibiotics in clinical settings, i.e. agents that belong to a new class of antibacterials, act on new targets or has a novel mechanisms of action, may not be sufficient to cope with the emergence of multidrug-resistant pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli, which are increasingly prevalent in healthcare settings in Europe, the USA and Asia. Hence, coordinated efforts in minimizing the risk of spread of resistant bacteria and renewing research efforts in the search for novel antibacterial agents are urgently needed to manage this global crisis.

    OBJECTIVE: This review highlights the challenges and potential in using current technologies in the discovery and development of novel antibacterial agents to keep up with the constantly evolving resistance in bacteria.

    CONCLUSION: With the explosion of bacterial genomic data and rapid development of new sequencing technologies, the understanding of bacterial pathogenesis and identification of novel antibiotic targets have significantly improved.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  19. Balasubramanian A, Shah JR, Gazali N, Rajan P
    BMJ Case Rep, 2017 Oct 09;2017.
    PMID: 28993356 DOI: 10.1136/bcr-2017-221269
    Severe extensive deep neck abscess in an infant is uncommon. We share the case of a previously well 4-month old infant who was referred for a 4-day history of fever, lethargy and left lateral neck swelling. Contrast-enhanced CT scan revealed a large 5.3×8 cm collection involving the left parapharyngeal and retropharyngeal space, causing significant airway narrowing. 40 mL of frank pus was drained via intraoral incision and drainage with the aid of endoscope, and undesirable complications from an external approach were averted. The infant was extubated 48 hours postsurgery and was discharged home well after completion of 1 week of intravenous antibiotics. The child was discharged well from our follow-up at 1 month review. We discuss the pathophysiology of deep neck space abscesses, its incidence in the paediatric population and the various management options.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  20. Shehzadi N, Hussain K, Khan MT, Salman M, Islam M
    Pak J Pharm Sci, 2017 Sep;30(5):1767-1777.
    PMID: 29084700
    The absence of chromophore and/or conjugated system, prerequisite for UV and florescent light detection, or absorbance at very low wavelength necessitates the development of simple and reliable methods for the determination of amikacin sulphate. Therefore, the present study describes for the first time dynamics of the drug derivatization using ninhydrin reagent and development and validation of a simple RP-HPLC method, using diode array detector (DAD). The variables such as heating time, heating type, drug-reagent ratio, reagent composition and storage temperature of the derivative were optimized. The analyte and aqueous ninhydrin solution upon heating for 2.00-5.00 min produced the colored drug-derivative which was stable for one month at refrigeration. The derivatized drug (20.00μL) was eluted through a column - Eclipse DB-C18 (5.00 µm, 4.60×150.00 mm), maintained at 25°C- using isocratic mobile phase comprising water and acetonitrile (70:30, v/v) at a flow rate of 1.00 mL/min, and detected at 400 nm. The method was found to be reliable (98.08-100.72% recovery), repeatable (98.02-100.72% intraday accuracy) and reproducible (98.47-101.27% inter day accuracy) with relative standard deviation less than 5%. The results of the present study indicate that the method is easy to perform, specific and sensitive, and suitable to be used for the determination of amikacin sulphate in bulk and pharmaceutical preparations using less expensive/laborious derivatization.
    Matched MeSH terms: Anti-Bacterial Agents/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links