METHODS: Human oral cancer cell lines (HSC2, YD10B, YD38, YD9, and YD32) were used in this study. BrdU incorporation, cell cycle and annexin-V/PI staining were all evaluated using flow cytometry to determine the extent to which O. octandra leaf extract inhibits cell proliferation and induces apoptosis. Cell viability and reactive oxygen species (ROS) were also measured in order to investigate the anti-cancer effects of O. octandra extracts. Western blotting was performed to detect cell cycle related protein such as cyclin d1 and cdk4, and to detect apoptosis-related proteins such as Bcl-2, Bcl-XL, Bax, Caspase-9, Cleaved caspase-3, Fas, Caspase-8, and Bid.
RESULTS: Leaf extract of O. octandra reduced oral squamous cell carcinoma (OSCC) cell viability in a dose-dependent manner. Leaf extract of O. octandra has non-toxic in normal keratinocytes. Also, O. octandra extract interrupted the DNA replication via G1 phase arrests, and this effect was independent of ROS generation. In the apoptosis-related experiments, the population of annexin V-positive cells increased upon treatment with O. octandra extract. Furthermore, the expression of anti-apoptotic protein (Bcl-2 and Bcl-xL) was decreased, whereas the expression of cleaved caspase-3 protein was increased in O. octandra-treated OSCC cells.
CONCLUSIONS: The results suggest that a leaf extract of O. octandra inhibited the proliferation of OSCC cells through G1 phase arrest and interrupting DNA replication. The leaf extract of O. octandra could trigger the apoptotic response via caspase 3 activation in OSCC cells. These results suggest that O. octandra has the potential to be developed as an alternative medicine for treating OSCC.
MATERIALS AND METHODS: The OncoCarta(™) panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits.
RESULTS: Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits.
CONCLUSION: Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools.
METHODS: We analysed the relationship between pre-diagnostic prolactin levels and the risk of in situ breast cancer overall, and by menopausal status and use of postmenopausal hormone therapy (HT) at blood donation. Conditional logistic regression was used to assess this association in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, including 307 in situ breast cancer cases and their matched control subjects.
RESULTS: We found a significant positive association between higher circulating prolactin levels and risk of in situ breast cancer among all women [pre-and postmenopausal combined, ORlog2=1.35 (95% CI 1.04-1.76), Ptrend=0.03]. No statistically significant heterogeneity was found between prolactin levels and in situ cancer risk by menopausal status (Phet=0.98) or baseline HT use (Phet=0.20), although the observed association was more pronounced among postmenopausal women using HT compared to non-users (Ptrend=0.06 vs Ptrend=0.35). In subgroup analyses, the observed positive association was strongest in women diagnosed with in situ breast tumors<4 years compared to ≥4 years after blood donation (Ptrend=0.01 vs Ptrend=0.63; Phet=0.04) and among nulliparous women compared to parous women (Ptrend=0.03 vs Ptrend=0.15; Phet=0.07).
CONCLUSIONS: Our data extends prior research linking prolactin and invasive breast cancer to the outcome of in situ breast tumours and shows that higher circulating prolactin is associated with increased risk of in situ breast cancer.
METHODS: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.
RESULTS: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.
CONCLUSION: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.
METHODOLOGY: MCM2, 4, 5 and 7 genes expression profiles were evaluated in three cervical tissue samples each of normal cervix, human papillomavirus (HPV)-infected low grade squamous intraepithelial lesion (LSIL), high grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma (SCC), using Human Transcriptome Array 2.0 and validated by nCounter® PanCancer Pathway NanoString Array. Immunohistochemical expression of MCM2 protein was semi-quantitatively assessed by histoscore in tissue microarrays containing 9 cases of normal cervix, 10 LSIL, 10 HSIL and 42 cases of SCC.
RESULTS: MCM2, 4, 5 and 7 genes expressions were upregulated with increasing fold change during the progression from LSIL to HSIL and the highest in SCC. MCM2 gene had the highest fold change in SCC compared to normal cervix. Immunohistochemically, MCM2 protein was localised in the nuclei of basal cells of normal cervical epithelium and dysplastic-neoplastic cells of CIN and SCC. There was a significant difference in MCM2 protein expression between the histological groups (P = 0.039), and histoscore was the highest in HSIL compared to normal cervix (P = 0.010).
CONCLUSION: The upregulation of MCM genes expressions in cervical carcinogenesis reaffirms MCM as a proliferative marker in DNA replication pathway, whereby proliferation of dysplastic and cancer cells become increasingly dysregulated and uncontrolled. A strong expression of MCM2 protein in HSIL may aid as a concatenated screening tool in detecting pre-cancerous cervical lesions.
EXPERIMENTAL DESIGN: Tumor tissue EGFRm status was determined at screening using the central cobas tissue test or a local tissue test. Baseline circulating tumor (ct)DNA EGFRm status was retrospectively determined with the central cobas plasma test.
RESULTS: Of 994 patients screened, 556 were randomized (289 and 267 with central and local EGFR test results, respectively) and 438 failed screening. Of those randomized from local EGFR test results, 217 patients had available central test results; 211/217 (97%) were retrospectively confirmed EGFRm positive by central cobas tissue test. Using reference central cobas tissue test results, positive percent agreements with cobas plasma test results for Ex19del and L858R detection were 79% [95% confidence interval (CI), 74-84] and 68% (95% CI, 61-75), respectively. Progression-free survival (PFS) superiority with osimertinib over comparator EGFR-TKI remained consistent irrespective of randomization route (central/local EGFRm-positive tissue test). In both treatment arms, PFS was prolonged in plasma ctDNA EGFRm-negative (23.5 and 15.0 months) versus -positive patients (15.2 and 9.7 months).
CONCLUSIONS: Our results support utility of cobas tissue and plasma testing to aid selection of patients with EGFRm advanced NSCLC for first-line osimertinib treatment. Lack of EGFRm detection in plasma was associated with prolonged PFS versus patients plasma EGFRm positive, potentially due to patients having lower tumor burden.