Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa.
Matched MeSH terms: Electron Transport Complex IV/genetics; DNA, Mitochondrial/genetics*; RNA, Ribosomal, 16S/genetics; Isoptera/genetics*
In Duchenne muscular dystrophy (DMD), identification of one nonsense mutation in the DMD gene has been considered an endpoint of genetic diagnosis. Here, we identified two closely spaced nonsense mutations in the DMD gene. In a Malaysian DMD patient two nonsense mutations (p.234S>X and p.249Q>X, respectively) were identified within exon 8. The proband's mother carried both mutations on one allele. Multiple mutations may explain the occasional discrepancies between genotype and phenotype in dystrophinopathy.
Recently, molecular testing for GJB2 mutations has become the standard of care for the diagnosis of patients with non syndromic hearing impairment of unknown cause. The aims of this study are to determine the association between GJB2 mutation and GJB6 and to report the variation of mutations in deaf students who have heterozygous GJB2. This retrospective study was conducted at Universiti Kebangsaan Malaysia Medical Center (UKMMC). Data was collected from previous files and records from Tissue Engineering and Human Genetic Research Group Laboratory. Approval from Ethical Committee was obtained prior to the study. A total of 138 students have been screened in previous studies in UKMMC for the presence of GJB2 mutations as a cause for hearing loss. Thirty four of the 138 subjects have GJB2 mutations; 2 showed homozygous mutations whereas another 32 were heterozygous for GJB2 gene mutation. Only 31 DNA samples of students presented with sensorineural hearing loss with heterozygous mutation in GJB2 gene were included in this study. The sequencing results obtained were analyzed. The degree of hearing loss of those students with association between GJB2 mutation and GJB6 mutation will be discussed. Five out of 31 subjects (16.2%) have mutations in their GJB6 gene, suggesting a digenic inheritance of GJB2/GJB6 mutation. In total, four novel mutations were identified; E137D (n=1), R32Q (n=1), E101K (n=1) and Y156H (n=1) and one mutation deletion; 366delT (n=1). All students with association GJB2 mutation and GJB6 showed severe to profound hearing loss in both ears. Interestingly this study not detected the large deletion of 342 kb in GJB6 gene suggesting that the mutation is very rare in this region compared to certain parts of the world.
Conflicting results have been reported in different populations on the association between two particular RAGE gene polymorphisms (-429T/C and -374T/A) and retinopathy in diabetic patients. Therefore this study was designed to assess the association between both gene polymorphisms with retinopathy in Malaysian diabetic patients. A total of 342 type 2 diabetic patients [171 without retinopathy (DNR) and 171 with retinopathy (DR)] and 235 healthy controls were included in this study. Genomic DNA was obtained from blood samples and the screening for the gene polymorphisms was done using polymerase chain reaction-restriction fragment length polymorphism approach. Overall, the genotype distribution for both polymorphisms was not statistically different (p>0.05) among the control, DNR and DR groups. The -429C minor allele frequency of DR group (12.0%) was not significantly different (p>0.05) when compared to DNR group (16.1%) and healthy controls (11.3%). The -374A allele frequency also did not differ significantly between the control and DNR (p>0.05), control and DR (p>0.05) as well as DNR and DR groups (p>0.05). This is the first study report on RAGE gene polymorphism in Malaysian DR patients. In conclusion, -429T/C and -374T/A polymorphisms in the promoter region of RAGE gene were not associated with Malaysian type 2 DR patients.
There have been numerous studies linking complement components and the pathogenesis of systemic lupus erythematosus (SLE). This is due to their numerous roles in modulating immune responses in the human body. This study examined the association of C2 and C7 genetic polymorphisms with the susceptibility to SLE based on two separate cohorts of patient and control samples from Malaysia. The 28-bp deletion in the C2 exon-intron junction and single nucleotide polymorphism in the 3'untranslated region in the C7 genes were detected based on direct polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism, respectively. A total of 150 patient and 150 healthy control samples were screened, but there was no association detected between either genes. All individuals presented with null deletion in C2 genes, while the C allele and CC genotypes were most commonly scored. These overall results suggest a lack of strong association with the C2 and C7 gene polymorphisms to the susceptibility of SLE in the Malaysian population.
Sundaland has a dynamic geographic history because its landmasses were periodically interconnected when sea levels fell during glacial periods. Superimposed on this geographic dynamism were environmental changes related to climatic oscillations. To investigate how tropical taxa responded to such changes, we studied the divergence and demographic history of two co-distributed rainforest passerine species, Arachnothera longirostra and Malacocincla malaccensis. We sampled birds primarily from Borneo and the Malay Peninsula, which straddle the now-submerged Sunda shelf, and analysed multilocus DNA data with a variety of coalescent and gene genealogy methods. Cross-shelf divergence in both species occurred well before the last glacial maximum, i.e., before the most recent land connection. However, post-divergence gene flow occurred, and it was more pronounced in A. longirostra (a highly vagile nectarivore/insectivore) than in M. malaccensis (an understory insectivore). Despite current habitat continuity on Borneo, the population of M. malaccensis in northeastern Borneo is substantially divergent from that on the rest of the island. The NE population experienced dramatic demographic fluctuations, probably because of competition with the other population, which expanded from western Borneo after the mid-Pleistocene. In contrast, the Borneo population of A. longirostra has little structure and appears to have experienced demographic expansion 16 kya, long after it had diverged from the Malay Peninsula population (630-690 kya). Malay Peninsula populations of both species have remained relatively stable. Overall, the most recent glacial period was not the chief determinant of the evolutionary dynamics of our study species, and in this respect, they are different from temperate species.
Microsatellite markers of an important medicinal plant, Eurycoma longifolia (Simaroubaceae), were developed for DNA profiling and genetic diversity studies.
Matched MeSH terms: Plants, Medicinal/genetics; DNA Primers/genetics*; DNA, Plant/genetics*; Eurycoma/genetics*
A number of genetic risk factors have been implicated in the development of neonatal severe hyperbilirubinaemia. This includes mutations in the uridine glucoronosyl transferase 1A1 (UGT1A1) gene which is responsible for unconjugated hyperbilirubinemia in Gilbert's Syndrome. We studied the prevalence of UGT1A1 gene mutations in a group of Malay neonates to determine whether they are risk factors to severe neonatal jaundice. One hundred and twenty-five Malay neonates with severe hyperbilirubinemia were studied. Ninety-eight infants without severe hyperbilirubinaemia were randomly selected from healthy Malay term infants (controls). DNA from EDTA cord blood samples were examined for UGT1A1 mutations nt211G > A and nt247T > C using established Taqman SNP genotyping assays and the UGT1A1*28 variant was detected by the Agilent 2100 bioanalyzer. All samples were also screened for common Malay G6PD variants using established techniques. The frequency of UGT1A1 211G > A mutation is significantly higher in the severely hyperbilirubinemic group (13%) than the control group (4%; p = 0.015) and all the positive cases were heterozygous for the mutation. There was no significant difference in the frequency of UGT1A1*28 mutation between the severely hyperbilirubinemic (3.5%) and the control group (0.01%; p = 0.09). None of the neonates in both groups carried the nt247 T > C mutation. The prevalence of G6PD mutation was significantly higher in the severely jaundiced group than control (9% vs 4%; p = 0.04). In conclusion, nt 211 G > A alleles constitute at least 12% of UGT1A1 mutations underlying unconjugated hyperbilirubinemia and appears to be a significant independent risk factor associated with severe neonatal hyperbilirubinemia in the Malay newborns.
Plastid trnL-trnF and nuclear ribosomal ITS sequences were obtained from selected wild-type individuals of Polygonum minus Huds. in Peninsular Malaysia. The 380 bp trnL-trnF sequences of the Polygonum minus accessions were identical. Therefore, the trnL-trnF failed to distinguish between the Polygonum minus accessions. However, the divergence of ITS sequences (650 bp) among the Polygonum minus accessions was 1%, indicating that these accessions could be distinguished by the ITS sequences. A phylogenetic relationship based on the ITS sequences was inferred using neighbor-joining, maximum parsimony and Bayesian inference. All of the tree topologies indicated that Polygonum minus from Peninsular Malaysia is unique and different from the synonymous Persicaria minor (Huds.) Opiz and Polygonum kawagoeanum Makino.
The C3435T, a major allelic variant of the ABCB1 gene, is proposed to play a crucial role in drug-resistance in epilepsy. The C/C genotype carriers reportedly are at higher risk of pharmacoresistance to AEDs, but only in some studies. The hypothesis of the C-variant associated risk and resistance to antiepileptic drugs (AEDs) has been hampered by conflicting results from inadequate power in case-control studies. To assess the role of C3435T polymorphism in drug-resistance in epilepsy, a systematic review and meta-analysis was conducted.
Matched MeSH terms: Drug Resistance/genetics*; Epilepsy/genetics*; Polymorphism, Genetic/genetics; P-Glycoprotein/genetics*
Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men.
OBJECTIVE:
To evaluate the G6PD(C563T) Mediterranean mutation among Jordanian females who were admitted to Princess Rahma Teaching Hospital (PRTH) with/or previous history of favism.
STUDY DESIGN:
A descriptive study.
PLACE AND DURATION OF STUDY:
Jordanian University of Science and Technology and PRTH, from October 2003 to October 2004.
METHODOLOGY:
After obtaining approval from the Ethics Committee of Jordanian University of Science and Technology, a total of 32 females were included in this study. Samples from 15 healthy individual females were used as a negative control. Blood samples from these patients were collected and analyzed by allele-specific polymerase chain reaction (AS-PCR) to determine the G6PD(C563T) mutation.
RESULTS:
Twenty one out of 32 patients were found to be G6PD(C563T) Mediterranean mutation (65.6%) positive. Three out of 21 patients were homozygous and remaining 18 were heterozygous for G6PD(C563T) Mediterranean mutation. Eleven (34.4%) out of 32 patients were found to be negative for G6PD(C563T) mutation indicating the presence of other G6PD mutations in the study sample.
CONCLUSION:
G6PD(C563T) Mediterranean mutation accounted for 65.6% of the study sample with favism in the North of Jordan. There is likely to be another G6PD deficiency variant implicated in acute hemolytic crisis (favism).
The authors suggest a simplification for the current molecular genetic testing of spinal muscular atrophy (SMA). Deletion analysis of SMN1 exon 7 alone may be necessary and sufficient for the diagnosis of SMA. It is based on sole contribution of survival motor neuron 1 (SMN1) exon 7 to SMA pathogenesis.
Matched MeSH terms: Exons/genetics*; Muscular Atrophy, Spinal/genetics*; Sequence Deletion/genetics*; Survival of Motor Neuron 1 Protein/genetics*
Extraribosomal functions of human ribosomal proteins (RPs) include the regulation of cellular growth and differentiation, and are inferred from studies that linked congenital disorders and cancer to the deregulated expression of RP genes. We have previously shown the upregulation and downregulation of RP genes in tumors of colorectal and nasopharyngeal carcinomas (NPCs), respectively. Herein, we show that a subset of RP genes for the large ribosomal subunit is differentially expressed among cell lines derived from the human nasopharyngeal epithelium. Three such genes (RPL27, RPL37a and RPL41) were found to be significantly downregulated in all cell lines derived from NPC tissues compared with a nonmalignant nasopharyngeal epithelial cell line. The expression of RPL37a and RPL41 genes in human nasopharyngeal tissues has not been reported previously. Our findings support earlier suspicions on the existence of NPC-associated RP genes, and indicate their importance in human nasopharyngeal organogenesis.
Several anuran groups of Laurasian origin are each co-distributed in four isolated regions of the Northern Hemisphere: central/southern Europe and adjacent areas, Korean Peninsula and adjacent areas, Indo-Malaya, and southern North America. Similar distribution patterns have been observed in diverse animal and plant groups. Savage [Savage, J.M., 1973. The geographic distribution of frogs: patterns and predictions. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans. University of Missouri Press, Columbia, pp. 351-445] hypothesized that the Miocene global cooling and increasing aridities in interiors of Eurasia and North America caused a southward displacement and range contraction of Laurasian frogs (and other groups). We use the frog genus Bombina to test Savage's biogeographical hypothesis. A phylogeny of Bombina is reconstructed based on three mitochondrial and two nuclear gene fragments. The genus is divided into three major clades: an Indo-Malaya clade includes B. fortinuptialis, B. lichuanensis, B. maxima, and B. microdeladigitora; a European clade includes B. bombina, B. pachypus, and B. variegata; and a Korean clade contains B. orientalis. The European and Korean clades form sister-group relationship. Molecular dating of the phylogenetic tree using the penalized likelihood and Bayesian analyses suggests that the divergence between the Indo-Malaya clade and other Bombina species occurred 5.9-28.6 million years ago. The split time between the European clade and the Korean clade is estimated at 5.1-20.9 million years ago. The divergence times of these clades are not significantly later than the timing of Miocene cooling and drying, and therefore can not reject Savage's hypothesis. Some other aspects of biogeography of Bombina also are discussed. The Korean Peninsula and the Shandong Peninsula might have supplied distinct southern refugia for B. orientalis during the Pleistocene glacial maxima. In the Indo-Malaya clade, the uplift of the Tibetan Plateau might have promoted the split between B. maxima and the other species.
Matched MeSH terms: Anura/genetics*; Cell Nucleus/genetics; DNA, Mitochondrial/genetics; Genetics, Population
To detect and characterize class 1 integrons among carbapenem-resistant strains of Acinetobacter spp. at University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia.
Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families.
Somatic mutations of phosphoinositide-3-kinase, catalytic, alpha; PIK3CA gene have been reported in several types of human cancers. The majority of the PIK3CA mutations map to the three "hot spots" - E542 K and E545 K in the helical (exon 9) and H1047R in the kinase (exon 20) domains of the p110alpha. These hot spot mutations lead to a gain of function in PI3 K signaling. We aimed to determine the frequency of PIK3CA mutations in the three most common Malaysian cancers. In this study, we assessed the genetic alterations in the PIK3CA gene in a series of 20 breast carcinomas, 24 colorectal carcinomas, 27 nasopharyngeal carcinomas (NPC), and 5 NPC cell lines. We performed mutation analysis of the PIK3CA gene by genomic polymerase chain reaction (PCR) and followed by DNA direct sequencing in exons 9 and 20. No mutations were detected in any of the 24 colorectal and 27 NPC samples, but one hot spot mutation located at exon 20 was found in a NPC cell line, SUNE1. Interestingly, PIK3CA somatic mutations were present in 6/20 (30%) breast carcinomas. Two of the six mutations, H1047R, have been reported previously as a hot spot mutation. Only one out of three hot spot mutations were identified in breast tumor samples. The remaining four mutations were novel. Our data showed that a higher incidence rate of PIK3CA mutations was present in Malaysian breast cancers as compared to colorectal and nasopharyngeal tumor tissues. Our findings also indicate that PIK3CA mutations play a pivotal role in activation of the PI3 K signaling pathway in breast cancer, and specific inhibitors of PIK3CA could be useful for breast cancer treatment in Malaysia.
Examination of types and recently collected specimens revealed that Ansonia anotis Inger, Tan, and Yambun, 2001 and Pedostibes maculatus (Mocquard, 1890), both described from Kinabalu, Sabah, Malaysia, are hardly differentiated morphologically. Analyses of a total of 2,427 bp of the 12S rRNA, tRNA(val), and 16S mitochondrial rRNA genes revealed that the two species are very close genetically. Thus A. anotis is regarded as conspecific and is synonymized with P. maculatus. Genetically, this species proved to form a lineage distinct from other bufonids from Southeast Asia, including species of Ansonia and Pedostibes. Because the species has also some unique morphological traits different from known bufonid genera, we propose to establish a new genus for Nectophryne maculata Mocquard, 1890.