Objectives: This is a prevalence study that assessed the genetic diversity of chronic hepatitis B patients and coinfection.
Methods: Chronic hepatitis B patients enrolled in this study were tested for antibodies of other hepatitis viruses using ELISA kits. Patient clinical profiles were collected and partial genes of HBV, HCV, and HEV were amplified, sequenced, and analyzed using phylogenetic analysis. The associations between variables were determined using the chi-squared test.
Results: Of the 82 patients recruited for this study, 53.7% were non-cirrhotic, 22.0% cirrhotic, 20.7% acute flare and 3.7% hepatocellular carcinoma. Majority (58%) of patients had a high level of ALT (≥34 U/L). Sequence analysis showed HBV (63.9%) belonged to genotype B, HEV belonged to genotype 4 while HCV belonged to genotype 3a and the genotypes were found to be significantly associated with the clinical stage of the patients (χ2=56.632; p<0.01). Similarly, Hepatitis B e antigen was also found to be significantly associated with the clinical stage of infection (χ2=51.952; p<0.01).
Conclusion: This study revealed that genetic diversity was found to have a significant impact on the severity of infection.
METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.
RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.
CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.
METHODS: We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping.
RESULTS: No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58).
CONCLUSION: The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.
METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot.
RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression.
CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.
METHODS: RNA was isolated from peripheral whole blood samples (2 x 10 ml) collected from NPC patients/controls (EDTA vacutainer). Gene expression patterns from 99 samples (66 NPC; 33 controls) were assessed using the Affymetrix array. We also collected expression data from 447 patients with other cancers (201 patients) and non-cancer conditions (246 patients). Multivariate logistic regression analysis was used to obtain biomarker signatures differentiating NPC samples from controls and other diseases. Differences were also analysed within a subset (n=28) of a pre-intervention case cohort of patients whom we followed post-treatment.
RESULTS: A blood-based gene expression signature composed of three genes - LDLRAP1, PHF20, and LUC7L3 - is able to differentiate NPC from various other diseases and from unaffected controls with significant accuracy (area under the receiver operating characteristic curve of over 0.90). By subdividing our NPC cohort according to the degree of patient response to treatment we have been able to identify a blood gene signature that may be able to guide the selection of treatment.
CONCLUSION: We have identified a blood-based gene signature that accurately distinguished NPC patients from controls and from patients with other diseases. The genes in the signature, LDLRAP1, PHF20, and LUC7L3, are known to be involved in carcinoma of the head and neck, tumour-associated antigens, and/or cellular signalling. We have also identified blood-based biomarkers that are (potentially) able to predict those patients who are more likely to respond to treatment for NPC. These findings have significant clinical implications for optimizing NPC therapy.
METHODS: This retrospective study covered all NPC patients who underwent radical IMRT treatment at the Penang General Hospital from June 2011 to February 2012. Patients of any age and stage of disease with histologically proven diagnosis were included. Information was collected on patient demographics, clinical stage, treatment received, including any neoadjuvant and/or concurrent chemotherapy, acute toxity and completion of IMRT within the OTT.
RESULTS: A total of 26 NPC patients were treated with IMRT during the study period; 88.5% had stage III/IV disease. 45.2% received neo-adjuvant chemotherapy while 50.0% were given concurrent chemo-irradiation. All patients completed the treatment and 92.3% within the 7 weeks OTT. Xerostomia was present in all patients with 92.3% having grade 2. Severe grade III/IV acute toxicity occurred in 73.1% of patients, the commonest of which was oral mucositis (57.6%). This was followed by dysphagia which occurred in 53.8%, skin reactions in 42.3% and weight loss in 19.2%. However, haematological toxicity was mild with only one patient having leucopaenia.
CONCLUSION: IMRT treatment for NPC is feasible in our center. More importantly, it can be delivered within the 7 weeks OTT in the majority of patients. Severe grade 3/4 toxicity is very common (73.1%) and thus maximal nutritional and analgesic support is required throughout the treatment.