Displaying publications 81 - 100 of 196 in total

Abstract:
Sort:
  1. Su J, Wang Y, Zhang X, Ma M, Xie Z, Pan Q, et al.
    Am J Clin Nutr, 2021 May 08;113(5):1332-1342.
    PMID: 33842951 DOI: 10.1093/ajcn/nqaa388
    BACKGROUND: Intermittent fasting is a popular dietary intervention with perceived relatively easy compliance and is linked to various health benefits, including weight loss and improvement in blood glucose concentrations. The mechanistic explanations underlying the beneficial effects of intermittent fasting remain largely obscure but may involve alterations in the gut microbiota.

    OBJECTIVES: We sought to establish the effects of 1 mo of intermittent fasting on the gut microbiome.

    METHODS: We took advantage of intermittent fasting being voluntarily observed during the Islamic faith-associated Ramadan and sampled feces and blood, as well as collected longitudinal physiologic data in 2 cohorts, sampled in 2 different years. The fecal microbiome was determined by 16S sequencing. Results were contrasted to age- and body weight-matched controls and correlated to physiologic parameters (e.g., body mass and calorie intake).

    RESULTS: We observed that Ramadan-associated intermittent fasting increased microbiome diversity and was specifically associated with upregulation of the Clostridiales order-derived Lachnospiraceae [no fasting 24.6 ± 13.67 compared with fasting 39.7 ± 15.9 in relative abundance (%); linear discriminant analysis = 4.9, P 

  2. Zhang X, Cheung S, Wang J, Zhang G, Wei Y, Liu H, et al.
    Front Microbiol, 2022;13:806390.
    PMID: 35283844 DOI: 10.3389/fmicb.2022.806390
    Marine picocyanobacteria Synechococcus exhibit highly diverse pigment types (PTs) and hence possess great advantage to utilize different spectrum of light effectively and to occupy a wide range of light niches. In this study, we explored the diversity of Synechococcus PTs in the eastern Indian Ocean (EIO), surface water of Strait of Malacca (SSM), and coastal waters of Sri Lanka (SSL). All the detected PTs were phycourobilin (PUB) containing PT 3 and showed distinct distribution patterns. Low PUB PT 3a and partial chromatic acclimater PT 3eA dominated in coastal and shallow waters (SSM and SSL). In contrast, high PUB and chromatic acclimaters PT 3dA and PT 3c/3dB were mainly distributed in open ocean (EIO). PT 3dA and PT 3c/3dB occurred at similar depths of the lower euphotic layers but showed distinct distribution pattern that are partially exclusive, indicating that they compete with each other for the same light niche. Interestingly, the newly described PT 3f was detected with high relative abundances at all stations and particularly dominated in the upper euphotic layer in EIO, which was confirmed with PT-specific quantitative polymerase chain reaction (qPCR). The relative abundance of PT 3f was negatively correlated with nutrient level, implying that PT 3f is adapted to oligotrophic waters. Pronounced niche partition of different PTs was observed in the upper and lower layers of euphotic zone in EIO and SSM/SSL. Light, nutrients, and strong stratification may play important roles in the niche partition of different PTs. Further analysis about ecologically significant taxonomic units revealed high diversity within each PT at different locations, which provided insights for understanding specific PT with wide range of niches.
  3. Khan AA, Zhang X, Hajjej F, Yang J, Ku CS, Por LY
    Heliyon, 2024 Jan 15;10(1):e23254.
    PMID: 38163235 DOI: 10.1016/j.heliyon.2023.e23254
    Ambient Intelligence is a concept that relates to a new paradigm of pervasive computing and has the objective of automating responses from the system to humans without any human intervention. In social media forensics, gathering, analyzing, storing, and validating relevant evidence for investigation in a heterogeneous environment is still questionable. There is no hierarchy for automation, even though standardization and secure processes from data collection to validation have not yet been discussed. This poses serious issues for the current investigation procedures and future evidence chain of custody management. This paper contributes threefold. First, it proposes a framework using a blockchain network with a dual chain of data transmission for privacy protection, such as on-chain and off-chain. Second, a protocol is designed to detect and separate local and global cyber threats and undermine multiple federated principles to personalize search space broadly. Third, this study manages personalized updates by means of optimizing backtracking parameters and automating replacements, which directly affects the reduction of negative influence on the social networking environment in terms of imbalanced and distributed data issues. This proposed framework enhances stability in digital investigation. In addition, the simulation uses an extensive social media dataset in different cyberspaces with a variety of cyber threats to investigate. The proposed work outperformed as compared to traditional single-level personalized search and other state-of-the-art schemes.
  4. Wu J, Kuan G, Wang Y, Liu Z, Hu X, Kueh YC, et al.
    BMC Public Health, 2024 Jun 29;24(1):1738.
    PMID: 38951834 DOI: 10.1186/s12889-024-18842-x
    Research indicates that COVID-19 has had adverse effects on the mental health of adolescents, exacerbating their negative psychological states. The purpose of this study is to investigate the impact of Physical Literacy (PL) on Negative Mental State caused by COVID-19 (NMSC) and identify potential factors related to NMSC and PL in Chinese adolescents. This cross-sectional study involved a total of 729 Chinese high school students with an average age of 16.2 ± 1.1 years. Participants' demographic data, PL data, and NMSC data were collected. PL and NMSC were measured using the self-reported Portuguese Physical Literacy Assessment Questionnaire (PPLA-Q), the Stress and Anxiety to Viral Epidemics-6 (SAVE-6), and the Fear of COVID-19 Scale (FCV-19). Adolescents in the current study demonstrated higher levels of NMSC and lower PL, with average scores of 3.45 and 2.26, respectively (on a scale of 5). Through multiple linear regression analysis, Motivation (MO), Confidence (CO), Emotional Regulation (ER), and Physical Regulation (PR) were identified as factors influencing NMSC in adolescents. The study findings contribute to providing guidance for actions aimed at alleviating NMSC among adolescents.
  5. Chui KT, Gupta BB, Liu RW, Zhang X, Vasant P, Thomas JJ
    Sensors (Basel), 2021 Sep 25;21(19).
    PMID: 34640732 DOI: 10.3390/s21196412
    Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.
  6. Wang B, Liu J, Xie J, Zhang X, Wang Z, Cao Z, et al.
    Clin Radiol, 2024 Oct;79(10):757-772.
    PMID: 38944542 DOI: 10.1016/j.crad.2024.05.016
    AIM: Radiomics involves the extraction of quantitative data from medical images to facilitate the diagnosis, prognosis, and staging of tumors. This study provides a comprehensive overview of the efficacy of radiomics in prognostic applications for head and neck cancer (HNC) in recent years. It undertakes a systematic review of prognostic models specific to HNC and conducts a meta-analysis to evaluate their predictive performance.

    MATERIALS AND METHODS: This study adhered rigorously to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature searches. The literature databases, including PubMed, Embase, Cochrane, and Scopus were systematically searched individually. The methodological quality of the incorporated studies underwent assessment utilizing the radiomics quality score (RQS) tool. A random-effects meta-analysis employing the Harrell concordance index (C-index) was conducted to evaluate the performance of all radiomics models.

    RESULTS: Among the 388 studies retrieved, 24 studies encompassing a total of 6,978 cases were incorporated into the systematic review. Furthermore, eight studies, focusing on overall survival as an endpoint, were included in the meta-analysis. The meta-analysis revealed that the estimated random effect of the C-index for all studies utilizing radiomics alone was 0.77 (0.71-0.82), with a substantial degree of heterogeneity indicated by an I2 of 80.17%.

    CONCLUSIONS: Based on this review, prognostic modeling utilizing radiomics has demonstrated enhanced efficacy for head and neck cancers; however, there remains room for improvement in this approach. In the future, advancements are warranted in the integration of clinical parameters and multimodal features, balancing multicenter data, as well as in feature screening and model construction within this field.

  7. Li H, Wang Y, Mustapha WAW, Zhang X, Zeng F, Liu J
    Int J Biol Macromol, 2025 Apr;304(Pt 1):140757.
    PMID: 39922348 DOI: 10.1016/j.ijbiomac.2025.140757
    A fish scale (FS) gelatin-fatty acid conjugate (GFC) with alkyl chain lengths of 8-18 was constructed to increase the aqueous solubility of curcumin. The effect of alkyl chain length on the interaction between GFC and curcumin was characterized by dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy (FS), and isothermal titration calorimetry (ITC). The surface hydrophobicity (from 4987 ± 223.79 to 9982 ± 262.78) and curcumin loading capacity (from 8.20 ± 0.54 to 31.18 ± 1.41 μg/mg) of the GFC exhibited significant enhancements through increasing alkyl chain lengths from 8 to 18. This was accompanied by a reduction in particle size (from 661.5 ± 28.9 to 329.7 ± 6.6 nm) and ζ-potential (from -2.7 ± 0.92 to -26.8 ± 0.27). FS and ITC confirmed that GOC shared an optimal binding constant (Ka, 2.40 × 108 L·mol-1 and 3.47 × 105 M-1) and binding site (n, 1.45 and 2.276) with curcumin among GFCs. Increasing GFC's alkyl chain length also boosted the stability of entrapped curcumin against the thermal environment and ultraviolet radiation. These results could be beneficial for gelatin-based nanocarrier development and application.
  8. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, et al.
    Sci Rep, 2015 Dec 14;5:17928.
    PMID: 26655688 DOI: 10.1038/srep17928
    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
  9. Qi H, Huang G, Han Y, Zhang X, Li Y, Pingguan-Murphy B, et al.
    Tissue Eng Part B Rev, 2015 Jun;21(3):288-97.
    PMID: 25547514 DOI: 10.1089/ten.TEB.2014.0494
    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
  10. Han YL, Wang S, Zhang X, Li Y, Huang G, Qi H, et al.
    Drug Discov Today, 2014 Jun;19(6):763-73.
    PMID: 24508818 DOI: 10.1016/j.drudis.2014.01.015
    Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
  11. Xu G, You D, Wong L, Duan D, Kong F, Zhang X, et al.
    Eur J Endocrinol, 2019 Apr;180(4):243-255.
    PMID: 30668524 DOI: 10.1530/EJE-18-0792
    Objective: Previous studies have shown sex-specific differences in all-cause and CHD mortality in type 2 diabetes. We performed a systematic review and meta-analysis to provide a global picture of the estimated influence of type 2 diabetes on the risk of all-cause and CHD mortality in women vs men.

    Methods: We systematically searched PubMed, EMBASE and Web of Science for studies published from their starting dates to Aug 7, 2018. The sex-specific hazard ratios (HRs) and their pooled ratio (women vs men) of all-cause and CHD mortality associated with type 2 diabetes were obtained through an inverse variance-weighted random-effects meta-analysis. Subgroup analyses were used to explore the potential sources of heterogeneity.

    Results: The 35 analyzed prospective cohort studies included 2 314 292 individuals, among whom 254 038 all-cause deaths occurred. The pooled women vs men ratio of the HRs for all-cause and CHD mortality were 1.17 (95% CI: 1.12-1.23, I2 = 81.6%) and 1.97 (95% CI: 1.49-2.61, I2 = 86.4%), respectively. The pooled estimate of the HR for all-cause mortality was approximately 1.30 in articles in which the duration of follow-up was longer than 10 years and 1.10 in articles in which the duration of follow-up was less than 10 years. The pooled HRs for all-cause mortality in patients with type 2 diabetes was 2.33 (95% CI: 2.02-2.69) in women and 1.91 (95% CI: 1.72-2.12) in men, compared with their healthy counterparts.

    Conclusions: The effect of diabetes on all-cause and CHD mortality is approximately 17 and 97% greater, respectively, for women than for men.

  12. Zhang P, Shi T, Fam X, Gu L, Xuan Y, Yang L, et al.
    Transl Androl Urol, 2020 Jun;9(3):1278-1285.
    PMID: 32676411 DOI: 10.21037/tau.2020.03.25
    Background: To analyze the perioperative parameters and outcomes of robotic-assisted laparoscopic pyeloplasty (RALP) for recurrent ureteropelvic junction obstruction (UPJO) and compare them with our series of RALP for primary UPJO. Secondary pyeloplasty can be a challenging procedure because of ureteral devascularization, fibrosis and dense stricture formation. Robotic approach could be adjunct to these repairs.

    Methods: Between August 2015 to March 2019, 96 patients in our hospital underwent RALP, with 32 patients as secondary intervention for recurrent UPJO. We compared the perioperative parameters of RALP for both primary UPJO and recurrent UPJO. Patient demographics, perioperative parameters, postoperative outcomes and complications from both groups were analyzed and compared.

    Results: RALP was successfully performed for all cases in both groups. The median operating time was longer for secondary RALP than for primary RALP [125 (108.5-155) vs. 151 (120-190) minutes, P=0.004]. There were no conversions to open surgery or significant perioperative complications. No difference in blood loss, transfusion rate and perioperative complication rates was noted between the two groups. The success rates were 98.44% (63/64) and 96.88% (31/32) at a median follow up of 32 and 20 months (P=0.001) for the primary and secondary groups, respectively.

    Conclusions: Secondary RALP is associated with significantly longer operative time as compared to primary RALP, especially during the exposure of the UPJO, however it is a safe surgical modality for recurrent UPJO with durable outcome. RALP should be an alternative treatment modality for recurrent UPJO whenever the facility and expert are available.

  13. Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, et al.
    J Appl Physiol (1985), 2015 May 1;118(9):1113-21.
    PMID: 25749441 DOI: 10.1152/japplphysiol.00056.2015
    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
  14. Sun GG, Lei JJ, Guo KX, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2019 Sep 01;36(3):792-802.
    PMID: 33597500
    A putative serine protease of T. spiralis (TsSP) was expressed in Escherichia coli and its potential as a diagnostic antigen was primarily assessed in this study. Anti-Trichinella IgG in serum samples from T. spiralis different animal hosts (mice, rats, pigs and rabbits) were detected on Western blot analysis with rTsSP. Anti-Trichinella antibodies were detected in 100% (30/30) of experimentally infected mice by rTsSP-ELISA. Cross-reactions of rTsSPELISA were not found with sera from mice infected with other parasites (S. erinaceieuropaei, S. japonicum, C. sinensis, A. cantonensis and T. gondii) and sera from normal mice. There was no statistical difference in antibody detection rate among mice infected with the encapsulated Trichinella species (T. spiralis, T. nativa, T. britovi, and T. nelsoni) (P>0.05). The results of rTsSP-ELISA showed that serum specific antibody IgG in mice infected with 100 or 500 T. spiralis muscle larvae (ML) were detectable early at 7-8 dpi, but not detected by ML ES antigen-ELISA prior to 10-12 dpi. Specific anti-Trichinella IgG was detected in 100% (18/18) of infected pigs by rTsSP-ELISA and ES-ELISA, but no specific antibodies was not detected in 20 conventionally raised normal pigs by two antigens. The results showed the rTsSP had the potential for early serodiagnosis of animal Trichinella infection, however it requires to be assayed with early infection sera of swine infected with Trichinella and other parasites.
  15. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

  16. Verkicharla PK, Ramamurthy D, Nguyen QD, Zhang X, Pu SH, Malhotra R, et al.
    Transl Vis Sci Technol, 2017 Jun;6(3):20.
    PMID: 28660095 DOI: 10.1167/tvst.6.3.20
    PURPOSE: To develop a fitness tracker (FitSight) to encourage children to increase time spent outdoors. To evaluate the wear pattern for this tracker and outdoor time pattern by estimating light illumination levels among children.

    METHODS: The development of the FitSight fitness tracker involved the designing of two components: (1) the smartwatch with custom-made FitSight watch application (app) to log the instant light illuminance levels the wearer is exposed to, and (2) a companion smartphone app that synchronizes the time outdoors recorded by the smartwatch to smartphone via Bluetooth communication. Smartwatch wear patterns and tracker-recorded daily light illuminance levels data were gathered over 7 days from 23 Singapore children (mean ± standard deviation age: 9.2 ± 1.4 years). Feedback about the tracker was obtained from 14 parents using a three-level rating scale: very poor/poor/good.

    RESULTS: Of the 14 parents, 93% rated the complete "FitSight fitness tracker" as good and 64% rated its wearability as good. While 61% of 23 children wore the watch on all study days (i.e., 0 nonwear days), 26% had 1 nonwear day, and 4.5% children each had 3, 4, and 5 nonwear days, respectively. On average, children spent approximately 1 hour in light levels greater than 1000 lux on weekdays and 1.3 hours on weekends (60 ± 46 vs. 79 ± 53 minutes, P = 0.19). Mean number of outdoor "spurts" (light illuminance levels >1000 lux) per day was 8 ± 3 spurts with spurt duration of 34 ± 32 minutes.

    CONCLUSION: The FitSight tracker with its novel features may motivate children to increase time outdoors and play an important role in supplementing community outdoor programs to prevent myopia.

    TRANSLATIONAL RELEVANCE: If the developed noninvasive, wearable, smartwatch-based fitness tracker, FitSight, promotes daytime outdoor activity among children, it will be beneficial in addressing the epidemic of myopia.

  17. Wang P, Yang J, Li X, Liu M, Zhang X, Sun D, et al.
    Sci Rep, 2017 07 26;7(1):6615.
    PMID: 28747656 DOI: 10.1038/s41598-017-06007-3
    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10-5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
  18. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
  19. Zhang X, Zhao L, Xiang S, Sun Y, Wang P, Chen JJ, et al.
    J Ethnopharmacol, 2023 May 10;307:116243.
    PMID: 36791927 DOI: 10.1016/j.jep.2023.116243
    ETHNOPHARMACOLOGICAL RELEVANCE: Yishen Tongluo formula (YSTLF) is formulated based on traditional Chinese medicine theory for the treatment of Diabetic kidney disease (DKD) and has been shown to be effective in improving the symptoms of DKD according to the clinical observation.

    AIM OF THE STUDY: To explore the effect of YSTLF on DKD and figure out whether its effects were due to the regulation Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1.

    MATERIALS AND METHODS: The extract of YSTLF at 1, 2.5 and 5 g/kg was orally administered to C57BLKS/J (db/db) mice for 8 weeks and db/db mice were given valsartan as a positive control. The littermate db/m and db/db mice were given vehicle as the control and model group, respectively. Blood urea nitrogen and serum creatinine were detected and the urinary albumin excretion, urea albumin creatinine ratio was calculated. The histopathological change of renal tissues in each group was determined. Simultaneously, the levels of fibrosis-related proteins and messenger RNA (mRNA) in kidney and high glucose (HG)-induced SV40-MES-13 cells were detected. The roles of YSTLF in regulating of Sirt6/TGF-β1/Smad2/3 signaling pathway were investigated in HG-stimulated SV40-MES-13 cells and validated in db/db mice. Furthermore, the effect of YSTLF on TGF-β1 degradation was investigated in HG-stimulated SV40-MES-13 cells.

    RESULTS: YSTLF significantly improved the renal function in DKD mice. YSTLF dose-dependently attenuated pathological changes and suppressed the expression of type I collagen, alpha smooth muscle actin, type IV collagen, and fibronectin in vitro and in vivo, resulting in ameliorating of renal fibrosis. YSTLF positively regulated Sirt6 expression, while inhibited the activating of TGF-β1/Smad2/3 signaling pathway. TGF-β1 was steady expressed in HG-stimulated SV40-MES-13 cells, whereas was continuously degraded under YSTLF treatment.

    CONCLUSIONS: YSTLF significantly ameliorates renal damages and fibrosis may via regulating Sirt6/TGF-β1/Smad2/3 signaling pathway as well as promoting the degradation of TGF-β1.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links