Displaying publications 81 - 100 of 420 in total

Abstract:
Sort:
  1. Wasserman RJ, Dick JTA, Welch RJ, Dalu T, Magellan K
    Conserv Biol, 2019 08;33(4):969-971.
    PMID: 30417437 DOI: 10.1111/cobi.13250
    Matched MeSH terms: Biodiversity
  2. Camacho-Sanchez M, Hawkins MTR, Tuh Yit Yu F, Maldonado JE, Leonard JA
    PeerJ, 2019;7:e7858.
    PMID: 31608182 DOI: 10.7717/peerj.7858
    Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial factors (e.g., larger diversity in larger areas) are important. The lowland small mammal community was replaced in higher elevations (from above ~1,900 m) with montane communities consisting mainly of high elevation Borneo endemics. The positive correlation we find between elevation and endemism is concordant with a hypothesis that predicts higher endemism with topographical isolation. This supports lineage history and geographic history could be important drivers of species diversity in this region.
    Matched MeSH terms: Biodiversity
  3. Ahmet Tolunay, Ayhan Akyol
    Sains Malaysiana, 2015;44:159-166.
    Sustainable forest management (SFM) practices have started in 1999 in Turkey. A set of criteria and indicators, composed by the General Directorate of Forestry (GDF) on the basis of the criteria and indicators defined in the Pan-European and Near Eastern Processes, was enquired via a survey to serve this purpose. GDF tested the sustainability under the following titles: Situation of forest resources, biodiversity, health and vitality, production capacity and functions, protective functions and environmental and socio-economic functions. There were problems in identification and definition of SFM criteria and indicators. Biological diversity indicators has been selected, described and developed in this study. At this phase, the survey was completed upon receiving the views of the scientists interested in different dimensions of this topic as well as the views of other interest groups affiliated with forestry. As a result, there were 13 indicators that may be used as the basis of a regional or forest management unit level for the purpose of protecting, developing and maintaining biodiversity. Furthermore, these indicators are instruments, which may easily be used by relevant decision-makers in the management of forest resources in a more effective and productive manner.
    Matched MeSH terms: Biodiversity
  4. Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T
    Sci Total Environ, 2023 Jan 20;857(Pt 2):159278.
    PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278
    Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
    Matched MeSH terms: Biodiversity
  5. Ng TH, Dulipat J, Foon JK, Lopes-Lima M, Alexandra Zieritz, Liew TS
    Zookeys, 2017.
    PMID: 28769673 DOI: 10.3897/zookeys.673.12544
    Sabah, a Malaysian state at the north-eastern tip of Borneo, is situated in one of the Earth's biodiversity hotspots yet its freshwater gastropod diversity remains poorly known. An annotated checklist of the freshwater gastropods is presented, based on specimens deposited in the BORNEENSIS collection of the Institute for Tropical Biology and Conservation at Universiti Malaysia Sabah, Malaysia. A KMZ file is also provided, which acts as a repository of digital images and complete collection data of all examined material, so that it can be shared and adapted to facilitate future research.
    Matched MeSH terms: Biodiversity
  6. Phung CC, Yu FTY, Liew TS
    Zookeys, 2017.
    PMID: 28769672 DOI: 10.3897/zookeys.673.12422
    Sabah, situated in one of the world's biodiversity hotspots, has the largest number of islands in Malaysia with more than 500 of various sizes and degrees of isolation. However, information on the islands' biodiversity is limited. This study provides an up-to-date checklist of land snail species found on 24 west coast islands in Sabah. A total of 67 species (nearly 20% of the total number of land snail species in the state) representing 37 genera and 19 families is enumerated based on systematic field surveys of 133 sampling plots, BORNEENSIS database records and species checklists published between 2000 and 2016. The number of species on the islands ranges from four to 29. Labuan Island has the highest number of species (29), followed by Tiga Island (25), Mantanani Besar Island (24) and Gaya Island (23). However, the populations of some land snail species may have declined as several previously recorded species on the islands were not found in a recent systematic field sampling. This checklist is provided as a baseline inventory for future island land snail studies and to better inform biodiversity conservation plans of marine parks and other islands on the Sabah west coast.
    Matched MeSH terms: Biodiversity
  7. Ożgo M, Liew TS, Webster NB, Schilthuizen M
    PeerJ, 2017;5:e3938.
    PMID: 29093997 DOI: 10.7717/peerj.3938
    Natural history collections are an important and largely untapped source of long-term data on evolutionary changes in wild populations. Here, we utilize three large geo-referenced sets of samples of the common European land-snail Cepaea nemoralis stored in the collection of Naturalis Biodiversity Center in Leiden, the Netherlands. Resampling of these populations allowed us to gain insight into changes occurring over 95, 69, and 50 years. Cepaea nemoralis is polymorphic for the colour and banding of the shell; the mode of inheritance of these patterns is known, and the polymorphism is under both thermal and predatory selection. At two sites the general direction of changes was towards lighter shells (yellow and less heavily banded), which is consistent with predictions based on on-going climatic change. At one site no directional changes were detected. At all sites there were significant shifts in morph frequencies between years, and our study contributes to the recognition that short-term changes in the states of populations often exceed long-term trends. Our interpretation was limited by the few time points available in the studied collections. We therefore stress the need for natural history collections to routinely collect large samples of common species, to allow much more reliable hind-casting of evolutionary responses to environmental change.
    Matched MeSH terms: Biodiversity
  8. Chee SY, Tan ML, Tew YL, Sim YK, Yee JC, Chong AKM
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159889.
    PMID: 36328260 DOI: 10.1016/j.scitotenv.2022.159889
    Cities all over the world are edging further into the ocean. Coastal reclamation is a global conservation issue with implications for ocean life, ecosystems, and human well-being. Using Malaysia as a case study, the coastal reclamation trends over three decades (1991-2021) were mapped using Landsat images and Normalized Difference Water Index (NDWI) via the Google Earth Engine platform. The changes in drivers and impacts of these coastal expansions throughout the decades were also reviewed. Twelve out of the 14 states in Malaysia had planned, active, or completed reclamations on their shorelines. Between 1991 and 2021, an absolute area of 82.64 km2 has been or will be reclaimed should all the projects be completed. The most reported driver for coastal expansion in Malaysia is for development and modernization (41 %), followed by rise in human population (20 %), monetary gains from the development of prime land (15 %), and agriculture and aquaculture activities (9 %). Drivers such as reduction of construction costs, financial advantage of prime land, oil and gas, advancement of technology, and tourism (Malaysia My Second Home (MM2H)) had only started occurring within the last decade, while others have been documented since the 1990's. Pollution is the most reported impact (24 %) followed by disruption of livelihoods, sources of income and human well-being (21 %), destruction of natural habitats (17 %), decrease in biodiversity (11 %), changes in landscapes (10 %), erosion / accretion (8 %), threat to tourism industry (6 %), and exposure to wave surges (3 %). Of these, changes in landscape, shoreline alignment, seabed contour, and coastal groundwater, as well as wave surges had only started to surface as impacts in the last two decades. Efforts to protect existing natural coastal and marine ecosystems, restore degraded ones, and fund endeavours that emphasize nature is needed to support sustainable development goals for the benefit of future generations.
    Matched MeSH terms: Biodiversity
  9. Görföl T, Huang JC, Csorba G, Győrössy D, Estók P, Kingston T, et al.
    PeerJ, 2022;10:e12445.
    PMID: 35070499 DOI: 10.7717/peerj.12445
    Recordings of bat echolocation and social calls are used for many research purposes from ecological studies to taxonomy. Effective use of these relies on identification of species from the recordings, but comparative recordings or detailed call descriptions to support identification are often lacking for areas with high biodiversity. The ChiroVox website (https://www.chirovox.org) was created to facilitate the sharing of bat sound recordings together with their metadata, including biodiversity data and recording circumstances. To date, more than 30 researchers have contributed over 3,900 recordings of nearly 200 species, making ChiroVox the largest open-access bat call library currently available. Each recording has a unique identifier that can be cited in publications; hence the acoustic analyses are repeatable. Most of the recordings available through the website are from bats whose species identities are confirmed, so they can be used to determine species in recordings where the bats were not captured or could not be identified. We hope that with the help of the bat researcher community, the website will grow rapidly and will serve as a solid source for bat acoustic research and monitoring.
    Matched MeSH terms: Biodiversity
  10. Che Azmi NA, Mohd Apandi N, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Apr;28(14):16948-16961.
    PMID: 33641100 DOI: 10.1007/s11356-021-12886-x
    Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.
    Matched MeSH terms: Biodiversity
  11. Goulding TC, Dayrat B
    Sci Rep, 2023 Sep 22;13(1):15793.
    PMID: 37737278 DOI: 10.1038/s41598-023-42057-6
    Knowledge of the biogeography of marine taxa has lagged significantly behind terrestrial ecosystems. A hotspot of marine biodiversity associated with coral reefs is known in the Coral Triangle of the Indo-West Pacific, but until now there was little data with which to evaluate broad patterns of species richness in the coastal fauna of ecosystems other than coral reefs. This data is critically needed for fauna with low functional redundancy like that of mangroves, that are vulnerable to habitat loss and rising sea levels. Here we show that the diversity of mangrove fauna is characterized by two distinct hotspots in the Indo-West Pacific, associated with two habitat types: fringe mangroves in the Coral Triangle, and riverine mangroves in the Strait of Malacca, between the west coast of Peninsular Malaysia and Sumatra. This finding, based on a family of slugs of which the systematics has been completely revised, illustrates an unexpected biogeographic pattern that emerged only after this taxon was studied intensively. Most organisms that live in the mangrove forests of Southeast Asia remain poorly known both taxonomically and ecologically, and the hotspot of diversity of onchidiid slugs in the riverine mangroves of the Strait of Malacca indicates that further biodiversity studies are needed to support effective conservation of mangrove biodiversity.
    Matched MeSH terms: Biodiversity
  12. Segaran TC, Azra MN, Handayani KS, Lananan F, Xu J
    Mar Environ Res, 2023 Nov;192:106216.
    PMID: 37891025 DOI: 10.1016/j.marenvres.2023.106216
    Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.
    Matched MeSH terms: Biodiversity
  13. Edwards FA, Edwards DP, Hamer KC, Fayle TM
    Oecologia, 2021 Mar;195(3):705-717.
    PMID: 33559003 DOI: 10.1007/s00442-020-04829-z
    Tropical rainforest disturbance and conversion are critical drivers of biodiversity loss. A key knowledge gap is understanding the impacts of habitat modification on mechanisms of community assembly, which are predicted to respond differently between taxa and across spatial scales. We use a null model approach to detect trait assembly of species at local- and landscape-scales, and then subdivide communities with different habitat associations and foraging guilds to investigate whether the detection of assembly mechanisms varies between groups. We focus on two indicator taxa, dung beetles and birds, across a disturbance gradient of primary rainforest, selectively logged rainforest, and oil palm plantations in Borneo, Southeast Asia. Random community assembly was predominant for dung beetles across habitats, whereas trait convergence, indicative of environmental filtering, occurred across the disturbance gradient for birds. Assembly patterns at the two spatial scales were similar. Subdividing for habitat association and foraging guild revealed patterns hidden when focusing on the overall community. Dung beetle forest specialists and habitat generalists showed opposing assembly mechanisms in primary forest, community assembly of habitat generalists for both taxa differed with disturbance intensity, and insectivorous birds strongly influenced overall community assembly relative to other guilds. Our study reveals the sensitivity of community assembly mechanisms to anthropogenic disturbance via a shift in the relative contribution of stochastic and deterministic processes. This highlights the need for greater understanding of how habitat modification alters species interactions and the importance of incorporating species' traits within assessments.
    Matched MeSH terms: Biodiversity
  14. Williams PJ, Zipkin EF, Brodie JF
    Nat Commun, 2024 Mar 28;15(1):2457.
    PMID: 38548741 DOI: 10.1038/s41467-024-46757-z
    Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how the degree of biogeographic isolation among communities may lead to differences in biodiversity. Biogeographic analyses generally treat regions as discrete units, but species assemblages differ in how much biogeographic history they share, just as species differ in how much evolutionary history they share. Here, we use a continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. On average, biodiversity is better predicted by environment than by isolation, especially for birds. However, mammals in deeply isolated regions are strongly influenced by isolation; mammal assemblages in Australia and Madagascar, for example, are much less diverse than predicted by environment alone and contain unique combinations of functional traits compared to other regions. Neotropical bat assemblages are far more functionally diverse than Paleotropical assemblages, reflecting the different trajectories of bat communities that have developed in isolation over tens of millions of years. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.
    Matched MeSH terms: Biodiversity
  15. Johnson E, Campos-Cerqueira M, Jumail A, Yusni ASA, Salgado-Lynn M, Fornace K
    Trends Parasitol, 2023 May;39(5):386-399.
    PMID: 36842917 DOI: 10.1016/j.pt.2023.01.008
    Emerging infectious diseases continue to pose a significant burden on global public health, and there is a critical need to better understand transmission dynamics arising at the interface of human activity and wildlife habitats. Passive acoustic monitoring (PAM), more typically applied to questions of biodiversity and conservation, provides an opportunity to collect and analyse audio data in relative real time and at low cost. Acoustic methods are increasingly accessible, with the expansion of cloud-based computing, low-cost hardware, and machine learning approaches. Paired with purposeful experimental design, acoustic data can complement existing surveillance methods and provide a novel toolkit to investigate the key biological parameters and ecological interactions that underpin infectious disease epidemiology.
    Matched MeSH terms: Biodiversity
  16. Srivathsan A, Ang Y, Heraty JM, Hwang WS, Jusoh WFA, Kutty SN, et al.
    Nat Ecol Evol, 2023 Jul;7(7):1012-1021.
    PMID: 37202502 DOI: 10.1038/s41559-023-02066-0
    Most of arthropod biodiversity is unknown to science. Consequently, it has been unclear whether insect communities around the world are dominated by the same or different taxa. This question can be answered through standardized sampling of biodiversity followed by estimation of species diversity and community composition with DNA barcodes. Here this approach is applied to flying insects sampled by 39 Malaise traps placed in five biogeographic regions, eight countries and numerous habitats (>225,000 specimens belonging to >25,000 species in 458 families). We find that 20 insect families (10 belonging to Diptera) account for >50% of local species diversity regardless of clade age, continent, climatic region and habitat type. Consistent differences in family-level dominance explain two-thirds of variation in community composition despite massive levels of species turnover, with most species (>97%) in the top 20 families encountered at a single site only. Alarmingly, the same families that dominate insect diversity are 'dark taxa' in that they suffer from extreme taxonomic neglect, with little signs of increasing activities in recent years. Taxonomic neglect tends to increase with diversity and decrease with body size. Identifying and tackling the diversity of 'dark taxa' with scalable techniques emerge as urgent priorities in biodiversity science.
    Matched MeSH terms: Biodiversity
  17. Ewers RM, Orme CDL, Pearse WD, Zulkifli N, Yvon-Durocher G, Yusah KM, et al.
    Nature, 2024 Jul;631(8022):808-813.
    PMID: 39020163 DOI: 10.1038/s41586-024-07657-w
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
    Matched MeSH terms: Biodiversity
  18. Minhat FI, Safuan CDM, Emran SAM, Hasnizul AFM, Afiq-Firdaus AM, Bachok Z, et al.
    Mar Environ Res, 2024 Nov;202:106825.
    PMID: 39489022 DOI: 10.1016/j.marenvres.2024.106825
    To mitigate adverse effects of ocean warming on coral reef degradation, resource managers increasingly explore management and regulation of local stressors to strengthen coral resilience and recovery. Comprehensive assessments and monitoring efforts offer a holistic understanding of reef dynamic ecosystems. In this study, we documented the distribution of benthic foraminiferal assemblages surrounding Pulau Redang, Malaysia, and assessed their potential for monitoring coral reef health using the Foraminifera in Reef Assessment and Monitoring (FoRAM) Index. Undeveloped (R1-R3) and developed (R4-R6) reef sites revealed distinct differences in reef conditions. Foraminiferal distribution showed Amphistegina lessonii (14-34%) as the dominant species, followed by Calcarina hispida (21%) and Calcarina mayori (19%). The Q-mode cluster analysis classified the distribution of foraminiferal assemblages in Pulau Redang into four sub-groups based on the reef ecological conditions. Group A1 and A2, represent the foraminiferal assemblage on the undeveloped west side of the island where live coral cover was >30%. Meanwhile, Group B1 and B2 represent the assemblage found in developed coastal regions with low live coral cover (≤20%). Additionally, the CCA results revealed a substantial influence of substrate type on the distribution of benthic foraminifera in the reef environments of Pulau Redang. FoRAM index consistently yielded high values across the study area despite varying coral reef conditions, probably due to the prevalence of Calcarina mayori in mesotrophic reefs (R4-R6), potentially distorting FoRAM values and providing a misleading indicator of reef conditions. The Modified Foram Index (MFI), calculated by excluding calcarinids, classified R3, R4, and R6 as less conducive for reef growth, aligning better with observed reef conditions. We recommend calibrating the FoRAM Index, particularly in mesotrophic reefs where calcarinids dominate foraminiferal assemblages, to enhance its precision and reliability for coral reef health monitoring and assessment within the region.
    Matched MeSH terms: Biodiversity
  19. Musthafa MM, Abdullah F, Koivula MJ
    PLoS One, 2022;17(3):e0266076.
    PMID: 35358260 DOI: 10.1371/journal.pone.0266076
    Biodiversity research relies largely on knowledge about species responses to environmental gradients, assessed using some commonly applied sampling method. However, the consistency of detected responses using different sampling methods, and thus the generality of findings, has seldom been assessed in tropical ecosystems. Hence, we studied the response consistency and indicator functioning of beetle assemblages in altitudinal gradients from two mountains in Malaysia, using Malaise, light, and pitfall traps. The data were analyzed using generalized linear mixed-effects models (GLMM), non-metric multidimensional scaling (NMDS), multivariate regression trees (MRT), and indicator species analysis (IndVal). We collected 198 morpho-species of beetles representing 32 families, with a total number of 3,052 individual beetles. The richness measures generally declined with increasing altitude. The mountains differed little in terms of light and Malaise trap data but differed remarkably in pitfall-trap data. Only light traps (but not the other trap types) distinguished high from middle or low altitudes in terms of beetle richness and assemblage composition. The lower altitudes hosted about twice as many indicators as middle or high altitudes, and many species were trap-type specific in our data. These results suggest that the three sampling methods reflected the altitudinal gradient in different ways and the detection of community variation in the environment thus depends on the chosen sampling method. However, also the analytical approach appeared important, further underlining the need to use multiple methods in environmental assessments.
    Matched MeSH terms: Biodiversity
  20. Banin LF, Raine EH, Rowland LM, Chazdon RL, Smith SW, Rahman NEB, et al.
    Philos Trans R Soc Lond B Biol Sci, 2023 Jan 02;378(1867):20210090.
    PMID: 36373930 DOI: 10.1098/rstb.2021.0090
    Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
    Matched MeSH terms: Biodiversity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links