Displaying publications 81 - 100 of 130 in total

Abstract:
Sort:
  1. Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I
    PMID: 30889711 DOI: 10.1016/j.msec.2019.01.082
    Novel biosensor architecture based on nanocrystalline cellulose (NCC)/CdS quantum dots (QDs) nanocomposite was developed for phenol determination. This nanocomposite was prepared with slight modification of nanocrystalline cellulose (NCC) with cationic surfactant of cetyltriammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (3-MPA) capped CdS QDs. The nanocomposite material was then employed as scaffold for immobilization of tyrosinase enzyme (Tyr). The electrocatalytic response of Tyr/CTAB-NCC/QDs nanocomposite towards phenol was evaluated using differential pulse voltammetry (DPV). The current response obtained is proportional to the concentration of phenol which attributed to the reduction of o-quinone produced at the surface of the modified electrode. Under the optimal conditions, the biosensor exhibits good linearity towards phenol in the concentration range of 5-40 μM (R2 = 0.9904) with sensitivity and limit of detection (LOD) of 0.078 μA/μM and 0.082 μM, respectively.
    Matched MeSH terms: Biosensing Techniques/methods*
  2. Md Ibrahim NNN, Hashim AM
    Sensors (Basel), 2020 Mar 12;20(6).
    PMID: 32178225 DOI: 10.3390/s20061572
    A biosensor formed by a combination of silicon (Si) micropore and graphene nanohole technology is expected to act as a promising device structure to interrogate single molecule biopolymers, such as deoxyribonucleic acid (DNA). This paper reports a novel technique of using a focused ion beam (FIB) as a tool for direct fabrication of both conical-shaped micropore in Si3N4/Si and a nanohole in graphene to act as a fluidic channel and sensing membrane, respectively. The thinning of thick Si substrate down to 50 µm has been performed prior to a multi-step milling of the conical-shaped micropore with final pore size of 3 µm. A transfer of graphene onto the fabricated conical-shaped micropore with little or no defect was successfully achieved using a newly developed all-dry transfer method. A circular shape graphene nanohole with diameter of about 30 nm was successfully obtained at beam exposure time of 0.1 s. This study opens a breakthrough in fabricating an integrated graphene nanohole and conical-shaped Si micropore structure for biosensor applications.
    Matched MeSH terms: Biosensing Techniques/methods*
  3. Md Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, et al.
    Sensors (Basel), 2019 Nov 22;19(23).
    PMID: 31766637 DOI: 10.3390/s19235111
    A toxicity electrochemical DNA biosensor has been constructed for the detection of carcinogens using 24 base guanine DNA rich single stranded DNA, and methylene blue (MB) as the electroactive indicator. This amine terminated ssDNA was immobilized onto silica nanospheres and deposited on gold nanoparticle modified carbon-paste screen printed electrodes (SPEs). The modified SPE was initially exposed to a carcinogen, followed by immersion in methylene blue for an optimized duration. The biosensor response was measured using differential pulse voltammetry. The performance of the biosensor was identified on several anti-cancer compounds. The toxicity DNA biosensor demonstrated a linear response range to the cadmium chloride from 0.0005 ppm to 0.01 ppm (R2 = 0.928) with a limit of detection at 0.0004 ppm. The biosensor also exhibited its versatility to screen the carcinogenicity of potential anti-cancer compounds.
    Matched MeSH terms: Biosensing Techniques/methods*
  4. Mohd Azmi MA, Tehrani Z, Lewis RP, Walker KA, Jones DR, Daniels DR, et al.
    Biosens Bioelectron, 2014 Feb 15;52:216-24.
    PMID: 24060972 DOI: 10.1016/j.bios.2013.08.030
    In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
    Matched MeSH terms: Biosensing Techniques/methods*
  5. Mohd Sukri SA, Heng LY, Abd Karim NH
    J Fluoresc, 2017 May;27(3):1009-1023.
    PMID: 28224358 DOI: 10.1007/s10895-017-2035-0
    The platinum(II) salphen complex N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum(II); (1) and its two derivatives containing hydroxyl functionalized side chains N,N'-bis-[4-[[1-(2-hydroxyethoxy)] salicylidene] phenylenediamine-platinum(II); (2) and N,N'-bis-[4-[[1-(3-hydroxypropoxy)] salicylidene] phenylenediamine-platinum(II); (3) were synthesized and characterized. The structures of the complexes were confirmed by 1H and 13C NMR spectroscopy, FTIR, ESI-MS and CHN elemental analyses. The effects of the hydroxyl substituent on the spectral properties and the DNA binding behaviors of the Pt(II) complexes were explored. The binding mode and interactions of these complexes with duplex DNA (calf thymus DNA and porcine DNA) and also single-stranded DNA were studied by UV-Vis and emission DNA titration. The complexes interact with DNA by intercalation binding mode with the binding constants in the order of magnitude (Kb = 104 M-1, CT-DNA) and (Kb = 105 M-1, porcine DNA). The intercalation of the complex in the DNA structure was proposed to happen by π-π stacking due to its square-planar geometry and aromatic rings structure. The phosphorescence emission spectral characteristics of Pt(II) complexes when interacted with DNA have been studied. Also, the application of the chosen hydroxypropoxy side chains complex (3) as an optical DNA biosensor, specifically for porcine DNA was investigated. These findings will be valuable for the potential use of the platinum(II) salphen complex as an optical DNA biosensor for the detection of porcine DNA in food products.
    Matched MeSH terms: Biosensing Techniques/methods*
  6. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, et al.
    Bioelectrochemistry, 2019 Jun;127:136-144.
    PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005
    Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
    Matched MeSH terms: Biosensing Techniques/methods*
  7. Muniandy S, Dinshaw IJ, Teh SJ, Lai CW, Ibrahim F, Thong KL, et al.
    Anal Bioanal Chem, 2017 Nov;409(29):6893-6905.
    PMID: 29030671 DOI: 10.1007/s00216-017-0654-6
    Reduced graphene oxide (rGO) has emerged as a promising nanomaterial for reliable detection of pathogenic bacteria due to its exceptional properties such as ultrahigh electron transfer ability, large surface to volume ratio, biocompatibility, and its unique interactions with DNA bases of the aptamer. In this study, rGO-azophloxine (AP) nanocomposite aptasensor was developed for a sensitive, rapid, and robust detection of foodborne pathogens. Besides providing an excellent conductive and soluble rGO nanocomposite, the AP dye also acts as an electroactive indicator for redox reactions. The interaction of the label-free single-stranded deoxyribonucleic acid (ssDNA) aptamer with the test organism, Salmonella enterica serovar Typhimurium (S. Typhimurium), was monitored by differential pulse voltammetry analysis, and this aptasensor showed high sensitivity and selectivity for whole-cell bacteria detection. Under optimum conditions, this aptasensor exhibited a linear range of detection from 108 to 101 cfu mL-1 with good linearity (R 2 = 0.98) and a detection limit of 101 cfu mL-1. Furthermore, the developed aptasensor was evaluated with non-Salmonella bacteria and artificially spiked chicken food sample with S. Typhimurium. The results demonstrated that the rGO-AP aptasensor possesses high potential to be adapted for the effective and rapid detection of a specific foodborne pathogen by an electrochemical approach. Graphical abstract Fabrication of graphene-based nanocomposite aptasensor for detection of foodborne pathogen.
    Matched MeSH terms: Biosensing Techniques/methods*
  8. Nordin N, Yusof NA, Radu S, Hushiarian R
    J Vis Exp, 2018 06 03.
    PMID: 29912194 DOI: 10.3791/56585
    Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm2). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
    Matched MeSH terms: Biosensing Techniques/methods*
  9. Nurjuliana M, Che Man YB, Mat Hashim D, Mohamed AK
    Meat Sci, 2011 Aug;88(4):638-44.
    PMID: 21420795 DOI: 10.1016/j.meatsci.2011.02.022
    The volatile compounds of pork, other meats and meat products were studied using an electronic nose and gas chromatography mass spectrometer with headspace analyzer (GCMS-HS) for halal verification. The zNose™ was successfully employed for identification and differentiation of pork and pork sausages from beef, mutton and chicken meats and sausages which were achieved using a visual odor pattern called VaporPrint™, derived from the frequency of the surface acoustic wave (SAW) detector of the electronic nose. GCMS-HS was employed to separate and analyze the headspace gasses from samples into peaks corresponding to individual compounds for the purpose of identification. Principal component analysis (PCA) was applied for data interpretation. Analysis by PCA was able to cluster and discriminate pork from other types of meats and sausages. It was shown that PCA could provide a good separation of the samples with 67% of the total variance accounted by PC1.
    Matched MeSH terms: Biosensing Techniques/methods
  10. Nurul Najian AB, Foo PC, Ismail N, Kim-Fatt L, Yean CY
    Mol Cell Probes, 2019 04;44:63-68.
    PMID: 30876924 DOI: 10.1016/j.mcp.2019.03.001
    This study highlighted the performance of the developed integrated loop-mediated isothermal amplification (LAMP) coupled with a colorimetric DNA-based magnetogenosensor. The biosensor operates through a DNA hybridization system in which a specific designed probe captures the target LAMP amplicons. We demonstrated the magnetogenosensor assay by detecting pathogenic Leptospira, which causes leptospirosis. The color change of the assay from brown to blue indicated a positive result, whereas a negative result was indicated by the assay maintaining its brown color. The DNA biosensor was able to detect DNA at a concentration as low as 200 fg/μl, which is equivalent to 80 genomes/reaction. The specificity of the biosensor assay was 100% when it was evaluated with 172 bacterial strains. An integrated LAMP and probe-specific magnetogenosensor was successfully developed, promising simple and rapid visual detection in clinical diagnostics and service as a point-of-care device.
    Matched MeSH terms: Biosensing Techniques/methods*
  11. Omar N, Loh Q, Tye GJ, Choong YS, Noordin R, Glökler J, et al.
    Sensors (Basel), 2013;14(1):346-55.
    PMID: 24379042 DOI: 10.3390/s140100346
    G-Quadruplex (G-4) structures are formed when G-rich DNA sequences fold into intra- or intermolecular four-stranded structures in the presence of metal ions. G-4-hemin complexes are often effective peroxidase-mimicking DNAzymes that are applied in many detection systems. This work reports the application of a G-rich daunomycin-specific aptamer for the development of an antibody-antigen detection assay. We investigated the ability of the daunomycin aptamer to efficiently catalyze the hemin-dependent peroxidase activity independent of daunomycin. A reporter probe consisting of biotinylated antigen and daunomycin aptamer coupled to streptavidin gold nanoparticles was successfully used to generate a colorimetric readout. In conclusion, the daunomycin aptamer can function as a robust alternative DNAzyme for the development of colorimetric assays.
    Matched MeSH terms: Biosensing Techniques/methods*
  12. Parkash O, Shueb RH
    Viruses, 2015 Oct 19;7(10):5410-27.
    PMID: 26492265 DOI: 10.3390/v7102877
    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
    Matched MeSH terms: Biosensing Techniques/methods*
  13. Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y
    Sensors (Basel), 2014;14(8):15227-43.
    PMID: 25195850 DOI: 10.3390/s140815227
    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1-9 mM and 0.5-100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 µM for AA and DA, respectively.
    Matched MeSH terms: Biosensing Techniques/methods*
  14. Rahim MZA, Govender-Hondros G, Adeloju SB
    Talanta, 2018 Nov 01;189:418-428.
    PMID: 30086941 DOI: 10.1016/j.talanta.2018.06.041
    The development of free and total cholesterol nanobiosensors based on a single step electrochemical integration of gold nanoparticles (AuNPs), cholesterol oxidase (COx), cholesterol esterase (CE) and a mediator with polypyrrole (PPy) films is described. The incorporation of the various components in the PPy films was confirmed by chronopotentiometry, cyclic voltammetry (CV), scanning electron microscopy, energy dispersive X-ray analysis (SEM-EDX), and Fourier transformed infrared (FTIR) spectroscopy. The free cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx, nanobiosensor achieved a minimum detectable concentration of 5 μM, a linear concentration range of 5-25 μM and a sensitivity of 1.6 µA cm-2 µM-1 in 0.05 M phosphate buffer (pH 7.00). For the total cholesterol, PPy-NO3--Fe(CN)64--AuNPs-COx-CE, nanobiosensor which also involved the co-incorporation of cholesterol esterase (CE) with the other components, the achieved performances include a minimum detectable total cholesterol concentration of 25 μM, a broader linear concentration range of 25-170 μM and a lower sensitivity of 0.1 µA µM-1 cm-2. Owing to its high selectivity, the presence of common interferants did not affect the total cholesterol measurement with the PPy-NO3--Fe(CN)64--AuNPs-COx-CE nanobiosensor. Both nanobiosensors were successfully used for direct and indirect determination of total cholesterol in human blood serum samples.
    Matched MeSH terms: Biosensing Techniques/methods*
  15. Rahmani M, Ghafoorifard H, Afrang S, Ahmadi MT, Rahmani K, Ismail R
    IET Nanobiotechnol, 2019 Aug;13(6):584-592.
    PMID: 31432790 DOI: 10.1049/iet-nbt.2018.5288
    The response of trilayer graphene nanoribbon (TGN)-based ion-sensitive field-effect transistor (ISFET) to different pH solutions and adsorption effect on the sensing parameters are analytically studied in this research. The authors propose a TGN-based sensor to electrochemically detect pH. To this end, absorption effect on the sensing area in the form of carrier concentration, carrier velocity, and conductance variations are investigated. Also, the caused electrical response on TGN as a detection element is analytically proposed, in which significant current decrease of the sensor is observed after exposure to high pH values. In order to verify the accuracy of the model, it is compared with recent reports on pH sensors. The TGN-based pH sensor exposes higher current compared to that of carbon nanotube (CNT) counterpart for analogous ambient conditions. While, the comparative results demonstrate that the conductance of proposed model is lower than that of monolayer graphene-counterpart for equivalent pH values. The results confirm that the conductance of the sensor is decreased and Vg-min is obviously right-shifted by increasing value of pH. The authors demonstrate that although there is not the experimental evidence reported in the part of literature for TGN sensor, but the model can assist in comprehending experiments involving nanoscale pH sensors.
    Matched MeSH terms: Biosensing Techniques/methods*
  16. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
    Matched MeSH terms: Biosensing Techniques/methods*
  17. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: Biosensing Techniques/methods*
  18. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2019 Sep 15;141:111434.
    PMID: 31238281 DOI: 10.1016/j.bios.2019.111434
    The pragmatic outcome of a lung cancer diagnosis is closely interrelated in reducing the number of fatal death caused by the world's top cancerous disease. Regardless of the advancement made in understanding lung tumor, and its multimodal treatment, in general the percentage of survival remain low. Late diagnosis of a cancerous cell in patients is the major hurdle for the above circumstances. In the new era of a lung cancer diagnosis with low cost, portable and non-invasive clinical sampling, nanotechnology is at its inflection point where current researches focus on the implementation of biosensor conjugated nanomaterials for the generation of the ideal sensing. The present review encloses the superiority of nanomaterials from zero to three-dimensional nanostructures in its discrete and nanocomposites nanotopography on sensing lung cancer biomarkers. Recent researches conducted on definitive nanomaterials and nanocomposites at multiple dimension with distinctive physiochemical property were focused to subside the cases associated with lung cancer through the development of novel biosensors. The hurdles encountered in the recent research and future preference with prognostic clinical lung cancer diagnosis using multidimensional nanomaterials and its composites are presented.
    Matched MeSH terms: Biosensing Techniques/methods*
  19. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S
    Molecules, 2020 May 30;25(11).
    PMID: 32486124 DOI: 10.3390/molecules25112548
    Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
    Matched MeSH terms: Biosensing Techniques/methods
  20. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 11 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
    Matched MeSH terms: Biosensing Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links