Displaying publications 81 - 100 of 204 in total

Abstract:
Sort:
  1. Ibrahim, A.B., Mohd Khan, A., Norrakiah, A.S., Intan Fazleen, Z.
    MyJurnal
    This study aimed to determine the amount of the fish (Oreachromi sp, Clarias sp. and Pangasius sutchii) consumption in Malaysia; the quantity of heavy metal residues (arsenic, cadmium, mercury and plumbum) in the fish and the level of the risk exposure. About 1440 respondents from six main production districts were randomly interviewed and the body weight of the respondents was also measured. A total of 240 ready to eat fish from food premises were also stratified randomly sampled where each sample was weighted to determine the average weight of one serving unit sold at food premises. The heavy metal residues were analyzed using Inductively Coupled Plasma–Optical Emission Spectrometer (ICP-OES) Optima 4300 DV (German). The level of heavy metals risk exposure was calculated as the percentage value of ’Provisional Tolerable Weekly Intakes’ (PTWI) and recalculated using computer programme @Risk 4.5 Excel (Palisade, USA). The result showed that 60.3% of the respondents consumed the fish. The level of heavy metal risk exposures were calculated as very low i.e. 0.14% (As), 0.31% (Cd), 0.09% (Hg) and 0.78% (Pb).
    Matched MeSH terms: Cadmium
  2. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
    Matched MeSH terms: Cadmium/analysis
  3. Ismail A
    Environ Monit Assess, 1994 Sep;32(3):187-91.
    PMID: 24214132 DOI: 10.1007/BF00546274
    A study of heavy metal contents in freshwater snails from rice fields have been made. The results indicate that the levels of heavy metals, Pb, Cu, Zn and Cd, are low and within the permissible limit of Malaysian Food Regulations. The results can serve as background data for further reference.
    Matched MeSH terms: Cadmium
  4. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21644-21655.
    PMID: 29785602 DOI: 10.1007/s11356-018-2286-6
    Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. Graphical abstract Figure of FESEM image of the hollow fibre, proposed mechanism and the graph of percentage removal of Cd(II) using POFA.
    Matched MeSH terms: Cadmium
  5. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
    Matched MeSH terms: Cadmium
  6. Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH
    Ecotoxicol Environ Saf, 2021 Mar 15;211:111905.
    PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905
    The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
    Matched MeSH terms: Cadmium/analysis
  7. Sahabudin E, Kubo S, Yuzir MAM, Othman N, Nadia Md Akhir F, Suzuki K, et al.
    Bioengineered, 2024 Dec;15(1):2314888.
    PMID: 38375815 DOI: 10.1080/21655979.2024.2314888
    Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 μM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.
    Matched MeSH terms: Cadmium/toxicity
  8. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Cadmium/analysis; Cadmium/chemistry
  9. Baneshi MM, Ghaedi AM, Vafaei A, Emadzadeh D, Lau WJ, Marioryad H, et al.
    Environ Res, 2020 04;183:109278.
    PMID: 32311912 DOI: 10.1016/j.envres.2020.109278
    The water sources contaminated by toxic dyes would pose a serious problem for public health. In view of this, the development of a simple yet effective method for removing dyes from industrial effluent has attracted interest from researchers. In the present work, flat sheet mixed matrix membranes (MMMs) with different physiochemical properties were fabricated by blending P84 polyimide with different concentrations of cadmium-based metal organic frameworks (MOF-2(Cd)). The resultant membranes were then used for simultaneous removal of eosin y (EY), sunset yellow (SY) and methylene blue (MB) under various process conditions. The findings indicated that the membranes could achieve high water permeability (117.8-171.4 L/m2.h.bar) and promising rejection for simultaneous dyes removal, recording value of 99.9%, 81.2% and 68.4% for MB, EY and SY, respectively. When 0.2 wt% MOF-2(Cd) was incorporated into the membrane matrix, the membrane separation efficiency was improved by 110.2% and 213.3% for EY and SY removal, respectively when compared with the pristine membrane. In addition, the optimization and modeling of membrane permeate flux and dye rejection was explored using response surface methodology. The actual and model results are in good agreement with R2 of at least 0.9983 for dye rejection and permeate flux. The high flux of the developed MMMs coupled with effective separation of dyes suggests a promising prospect of using P84 polyimide MMMs incorporated with MOF-2(Cd) for water purification.
    Matched MeSH terms: Cadmium*
  10. Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al.
    Braz J Infect Dis, 2014 Nov-Dec;18(6):600-8.
    PMID: 25181404 DOI: 10.1016/j.bjid.2014.05.015
    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
    Matched MeSH terms: Cadmium Compounds
  11. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA, Jume BH
    Int J Biol Macromol, 2018 Sep;116:255-263.
    PMID: 29746971 DOI: 10.1016/j.ijbiomac.2018.05.031
    In this study, the Cu(II) and Cd(II) ions removal behavior of crosslinked chitosan beads grafted poly(methacrylamide) (abbreviated as crosslinked chitosan-g-PMAm) from single metal ion solutions was investigated. The modified chitosan beads presented a remarkable improvement in acid resistance. The batch experiments demonstrated that pH of solution played a significant role in adsorption. It was found that the adsorption of Cu(II) and Cd(II) were optimum at pH 4 and pH 5, respectively. The maximum adsorption capacities for Cu(II) and Cd(II) based on Langmuir equation were 140.9 mg g-1 and 178.6 mg g-1, respectively. Pseudo-second order gave a better fit for adsorption data with respect to linearity coefficients than pseudo-first order suggesting that chemisorption or electron transfer is the dominant mechanism of the metal ions onto crosslinked chitosan-g-PMAm. In addition, X-ray photoelectron spectroscopy (XPS) investigations revealed that adsorption of both metal ions took place on the surfaces of crosslinked chitosan-g-PMAm by chelation through CNH2, CO and CO groups. Overall, the modified chitosan has proved a promising adsorbent for removal of metal ions.
    Matched MeSH terms: Cadmium/chemistry*
  12. Chai YC, Jun HK
    J Nanosci Nanotechnol, 2019 Jun 01;19(6):3505-3510.
    PMID: 30744778 DOI: 10.1166/jnn.2019.16099
    Nanosize semiconductors have been used as active sensitizers for the application of quantum dot-sensitized solar cells (QDSSC). "Green" sensitizers are introduced as an alternative for the toxic Cd and Pb based compounds. In this work, Bi₂S₃ quantum dots (QDs) were fabricated and used as sensitizers in QDSSC. QDs were grown on TiO₂ electrode via solution dipping process. Although the performance of "green" QDSSC is not as high as that of CdS or CdSe based QDSSCs, its performance can be enhanced with post heat treatment. The effect is dependent on the heat treatment temperature profile where gradual increase of sintering temperature is preferred. The effects of post heat treatment on Bi₂S₃ sensitized TiO₂ electrodes are investigated and discussed.
    Matched MeSH terms: Cadmium; Cadmium Compounds
  13. Brza MA, B Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842522 DOI: 10.3390/polym12091896
    In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
    Matched MeSH terms: Cadmium
  14. Rajan, Nithiya Shanmuga, Bhat,Rajeev, Karim, A.A.
    MyJurnal
    Unripe and ripe kundang fruits (Bouea macrophylla Griffith) is either consumed fresh or is cooked in Malaysia. In this study composition of unripe and ripe fruits (proximate, amino acids profile, minerals and heavy metal contents) were evaluated. Results obtained showed unripe kundang fruit to possess higher moisture, ash, crude lipid, crude fiber and crude protein contents than the ripe fruits. With regard to amino acid contents, unripe fruits had higher content of essential amino acids. The unripe and ripe fruits were found to be rich in essential minerals with potassium (K) to be in abundance. Heavy metals such as cadmium, nickel, mercury, lead and arsenic, were detected in trace amounts (< 5.0 mg/kg) in both unripe and ripe fruits. Through this investigation, it is concluded that both unripe and ripe fruits to posses’ adequate amount of nutritionally important compounds beneficial to human health and can be explored for commercial purposes.
    Matched MeSH terms: Cadmium
  15. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
    Matched MeSH terms: Cadmium/analysis*
  16. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Cadmium/analysis
  17. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
    Matched MeSH terms: Cadmium
  18. Rasheed F, Zafar Z, Waseem ZA, Rafay M, Abdullah M, Salam MMA, et al.
    Int J Phytoremediation, 2020;22(3):287-294.
    PMID: 31468990 DOI: 10.1080/15226514.2019.1658711
    Conocarpus lancifolius is a fast-growing and drought tolerant tree species with phytoremediation potential in arid environments. The present study was conducted to evaluate the phytoaccumulation potential under wastewater treatment. The experiment was performed in a greenhouse where 3-month-old seedlings were irrigated with industrial wastewater and growth, biomass and physiological parameters were measured. Concentrations of zinc (Zn), lead (Pb), and cadmium (Cd) in leaves, shoots, and roots along with translocation and tolerance index were also determined. The results showed that under wastewater treatment total biomass increased from 24.2 to 31.5 g, net CO2 assimilation rate increased from 9.93 to 13.3 μmol m-2 s-1, and water use efficiency increased from 1.7 to 2.42. Similarly, heavy metals (Zn, Pb, and Cd) accumulation in stem, leaves, and roots increased significantly under wastewater treatment where the highest concentration of Zn, Pb and Cd was found in roots followed by leaves and stem, respectively. Tolerance index was found >1, and translocation factor of all heavy metals was found >1. The study revealed that phytoaccumulation potential of C. lancifolius was mainly driven by improved net CO2 assimilation rate and water use efficiency.
    Matched MeSH terms: Cadmium
  19. Yasmin Mohd Idris Perama, Nur Shahidah Abdul Rashid, Syazwani Mohd Fadzil, Khoo Kok Siong
    Sains Malaysiana, 2018;47:611-618.
    Mathematically, the human alimentary tract organs were simplified in the model structure as separate compartments with
    pathways of transfer that are kinetically homogenous and equally distributed. The development of gastro-compartment
    model follows the first order kinetics of differential equations to describe cadmium absorption, distribution and elimination
    in the human digestive system. With the aid of in vitro DIN assay, an artificial gastric and gastrointestinal fluid were
    prepared using water leach purification (WLP) residue as a sample that contained toxic metals cadmium. The Simulation,
    Analysis and Modelling II (SAAM II) V2.1 software is employed to design models easily, simulate experiments quickly and
    analyze data accurately. Based on the experimental inputs and fractional transfer rates parameter incorporated to the
    gastro-compartment model, the concentration of cadmium against time profile curves were plotted as the model output.
    The curve presented concentration of cadmium in both gastric and gastrointestinal fluid where initially absorption phase
    (first hour) occurred followed by the distribution phase (second to third hours) and elimination process (third to fifth
    hours). The concentration of cadmium obtained from the simulated model structures was in good agreement with the
    fitted model predicted measurements as statistical t-test conducted showed the values were not significantly different.
    Therefore, modeling approach with SAAM II software gave realistic and better estimation of cadmium dissolution into
    the human gastrointestinal tract.
    Matched MeSH terms: Cadmium
  20. Ko MS, Nguyen TH, Kim YG, Linh BM, Chanpiwat P, Hoang HNT, et al.
    Environ Geochem Health, 2020 Dec;42(12):4193-4201.
    PMID: 32613478 DOI: 10.1007/s10653-020-00631-1
    This study investigated the contamination levels and sources of As and Cd vicinity area from Nui Phao mine that is one of the largest tungsten (W) open pit mines in the world. Soil and plant samples were collected from the study area to identify the concentrations of As and Cd using aqua-regia or HNO3 digestion. According to the Vietnamese agricultural soil criteria, all soil samples were contaminated with As and Cd. The distribution of As concentration is related to the distance from the Nui Phao mine. The higher As concentrations were measured in the area close to the mine. However, the Cd distribution in the soil showed a different pattern from As. Enrichment factor and Geoaccumulation Index (Igeo) indicated that As in the soil is derived from the mining activities, while Cd could have other geogenic or anthropogenic sources. The ranges of As and Cd concentration in polished rice grains in the Nui Phao mine area exceeded the CODEX criteria (0.2 mg/kg), which indicated extreme contamination. The arsenic concentration between soil and plant samples was determined to be a positive correlation, while the Cd concentration showed a negative correlation, implying that As and Cd have different geochemical behavior based on their sources.
    Matched MeSH terms: Cadmium/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links