Displaying publications 81 - 100 of 104 in total

Abstract:
Sort:
  1. Radford CA, Ghazali SM, Montgomery JC, Jeffs AG
    PLoS One, 2016;11(2):e0149338.
    PMID: 26890124 DOI: 10.1371/journal.pone.0149338
    Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1) with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.
    Matched MeSH terms: Discriminant Analysis
  2. Salimi N, Loh KH, Kaur Dhillon S, Chong VC
    PeerJ, 2016;4:e1664.
    PMID: 26925315 DOI: 10.7717/peerj.1664
    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
    Matched MeSH terms: Discriminant Analysis
  3. Sakai S, Kato M, Inoue T
    Am J Bot, 1999 May;86(5):646-58.
    PMID: 10330067
    The pollinators of 29 ginger species representing 11 genera in relation to certain floral morphological characteristics in a mixed-dipterocarp forest in Borneo were investigated. Among the 29 species studied, eight were pollinated by spiderhunters (Nectariniidae), 11 by medium-sized Amegilla bees (Anthophoridae), and ten by small halictid bees. These pollination guilds found in gingers in Sarawak are comparable to the pollination guilds of neotropical Zingiberales, i.e., hummingbird-, and euglossine-bee-pollinated guilds. Canonical discriminant analysis revealed that there were significant correlations between floral morphology and pollination guilds and suggests the importance of plant-pollinator interactions in the evolution of floral morphology. Most species in the three guilds were separated on the plot by the first and second canonical variables. Spiderhunter-pollinated flowers had longer floral tubes, while Amegilla-pollinated flowers had wider lips than the others, which function as a platform for the pollinators. Pistils and stamens of halictid-pollinated flowers were smaller than the others. The fact that gingers with diverse morphologies in a forest with high species diversity were grouped into only three pollination guilds and that the pollinators themselves showed low species diversity suggests that many species of rare understory plants have evolved without segregating pollinators in each pollination guild.
    Matched MeSH terms: Discriminant Analysis
  4. Rohman A, Che Man YB
    Food Chem, 2011 Nov 15;129(2):583-588.
    PMID: 30634271 DOI: 10.1016/j.foodchem.2011.04.070
    Currently, the authentication of virgin coconut oil (VCO) has become very important due to the possible adulteration of VCO with cheaper plant oils such as corn (CO) and sunflower (SFO) oils. Methods involving Fourier transform mid infrared (FT-MIR) spectroscopy combined with chemometrics techniques (partial least square (PLS) and discriminant analysis (DA)) were developed for quantification and classification of CO and SFO in VCO. MIR spectra of oil samples were recorded at frequency regions of 4000-650cm-1 on horizontal attenuated total reflectance (HATR) attachment of FTIR. DA can successfully classify VCO and that adulterated with CO and SFO using 10 principal components. Furthermore, PLS model correlates the actual and FTIR estimated values of oil adulterants (CO and SFO) with coefficient of determination (R2) of 0.999.
    Matched MeSH terms: Discriminant Analysis
  5. Liyana Daud, Mohamad Razali Abdullah, Siti Musliha Mat-Rasid, Ahmad Bisyri Husin Musawi Maliki, Amr Alnaimat, Muhammad Rabani Hashim, et al.
    MyJurnal
    The study attempts to use multivariate analysis to evaluate the profile of male player for developments of Long-Term Talent in Sports (LT-TiS) model based on anthropometric and motor fitness components. Data of anthropometric and motor fitness included power, flexibility, coordination and speed were obtained from 2019 respondents aged 7.32±0.52 year. Data interpretations were carried out using multivariate analysis of Principle Components Analysis (PCA) and Discriminant analysis (DA). The adequacy of sampling has been measured using Bartletts tests on sphericity and Kaiser-Meyer-Olkin (KMO) has been used, with this conformance of running the Principal Component Analysis (PCA). Then, Discriminant Analysis (DA) were used to validate the correctness of group classification by LT-TiS model. Then, Discriminant Analysis (DA) were used to validate the correctness of group classification by LT-TiS. As a result, two factors with eigenvalues greater than 1 were extracted which accounted for 55.00% of the variations present in the original variables was found. The two factors were used to obtain the factor score coefficients explained by 27.86% and 27.21% of the variations in player performance respectively. Factor 1 revealed high factor loading on motor fitness compared to factor 2 as it was significantly related to anthropometrics. A model was obtained using standardized coefficient of factor 1. Three clusters of performance were shaped in view by categorizing; LT−TiS≥65%, 40%≤LT−TiS
    Matched MeSH terms: Discriminant Analysis
  6. Rashid M, Bari BS, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, et al.
    PeerJ Comput Sci, 2021;7:e374.
    PMID: 33817022 DOI: 10.7717/peerj-cs.374
    Brain-computer interface (BCI) is a viable alternative communication strategy for patients of neurological disorders as it facilitates the translation of human intent into device commands. The performance of BCIs primarily depends on the efficacy of the feature extraction and feature selection techniques, as well as the classification algorithms employed. More often than not, high dimensional feature set contains redundant features that may degrade a given classifier's performance. In the present investigation, an ensemble learning-based classification algorithm, namely random subspace k-nearest neighbour (k-NN) has been proposed to classify the motor imagery (MI) data. The common spatial pattern (CSP) has been applied to extract the features from the MI response, and the effectiveness of random forest (RF)-based feature selection algorithm has also been investigated. In order to evaluate the efficacy of the proposed method, an experimental study has been implemented using four publicly available MI dataset (BCI Competition III dataset 1 (data-1), dataset IIIA (data-2), dataset IVA (data-3) and BCI Competition IV dataset II (data-4)). It was shown that the ensemble-based random subspace k-NN approach achieved the superior classification accuracy (CA) of 99.21%, 93.19%, 93.57% and 90.32% for data-1, data-2, data-3 and data-4, respectively against other models evaluated, namely linear discriminant analysis, support vector machine, random forest, Naïve Bayes and the conventional k-NN. In comparison with other classification approaches reported in the recent studies, the proposed method enhanced the accuracy by 2.09% for data-1, 1.29% for data-2, 4.95% for data-3 and 5.71% for data-4, respectively. Moreover, it is worth highlighting that the RF feature selection technique employed in the present study was able to significantly reduce the feature dimension without compromising the overall CA. The outcome from the present study implies that the proposed method may significantly enhance the accuracy of MI data classification.
    Matched MeSH terms: Discriminant Analysis
  7. Samsudin MS, Azid A, Khalit SI, Sani MSA, Lananan F
    Mar Pollut Bull, 2019 Apr;141:472-481.
    PMID: 30955758 DOI: 10.1016/j.marpolbul.2019.02.045
    The prediction models of MWQI in mangrove and estuarine zones were constructed. The 2011-2015 data employed in this study entailed 13 parameters from six monitoring stations in West Malaysia. Spatial discriminant analysis (SDA) had recommended seven significant parameters to develop the MWQI which were DO, TSS, O&G, PO4, Cd, Cr and Zn. These selected parameters were then used to develop prediction models for the MWQI using artificial neural network (ANN) and multiple linear regressions (MLR). The SDA-ANN model had higher R2 value for training (0.9044) and validation (0.7113) results than SDA-MLR model and was chosen as the best model in mangrove estuarine zone. The SDA-ANN model had also demonstrated lower RMSE (5.224) than the SDA-MLR (12.7755). In summary, this work suggested that ANN was an effective tool to compute the MWQ in mangrove estuarine zone and a powerful alternative prediction model as compared to the other modelling methods.
    Matched MeSH terms: Discriminant Analysis
  8. Mas Ezatul Nadia Mohd Ruah, Nor Fazila Rasaruddin, Fong, Sim Siong, Mohd Zuli Jaafar
    MyJurnal
    This paper outlines the application of chemometrics and pattern recognition tools to classify palm oil using Fourier Transform Mid Infrared spectroscopy (FT-MIR). FT-MIR spectroscopy is used as an effective analytical tool in order to categorise the oil into the category of unused palm oil and used palm oil for frying. The samples used in this study consist of 28 types of pure palm oil, and 28 types of frying palm oils. FT-MIR spectral was obtained in absorbance mode at the spectral range from 650 cm -1 to 4000 cm -1 using FT-MIR-ATR sample handling. The aim of this work is to develop fast method in discriminating the palm oils by implementing Partial Least Square Discriminant Analysis (PLS-DA), Learning Vector Quantisation (LVQ) and Support Vector Machine (SVM). Raw FT-MIR spectra were subjected to Savitzky-Golay smoothing and standardized before developing the classification models. The classification model was validated through finding the value of percentage correctly classified by test set for every model in order to show which classifier provided the best classification. In order to improve the performance of the classification model, variable selection method known as t-statistic method was applied. The significant variable in developing classification model was selected through this method. The result revealed that PLSDA classifier of the standardized data with application of t-statistic showed the best performance with highest percentage correctly classified among the classifiers.
    Matched MeSH terms: Discriminant Analysis
  9. Nor Nasriah Zaini, Mardiana Saaid, Hafizan Juahir, Rozita Osman
    MyJurnal
    Tongkat Ali (Eurycoma longifolia) is one of the most popular tropical herbal plants as it is believed to enhance virility and sexual prowess. This study looked examined chromatographic fingerprint of Tongkat Ali roots and its products generated using online solid phase-extraction liquid chromatography (SPE-LC) combined with chemometric approaches. The aim was to determine its quality. Pressurised liquid extraction (PLE) technique was used prior to online SPE-LC using polystyrene divinyl benzene (PSDVB) and C18 columns. Seventeen Tongkat Ali roots and 10 products (capsules) were analysed. Chromatographic dataset was subjected to chemometric techniques, namely cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) using 37 selected peaks. The samples were grouped into three clusters based on their quality. The PCA resulted in 11 latent factors describing 90.8% of the whole variance. Pattern matching analysis showed no significant difference (p>0.05) between the roots and products within the same CA grouping. The findings showed the combination of chromatographic fingerprint and chemometric techniques provided comprehensive evaluation for efficient quality control of Tongkat Ali formulation.
    Matched MeSH terms: Discriminant Analysis
  10. Lee LC, Liong CY, Jemain AA
    Analyst, 2018 Jul 23;143(15):3526-3539.
    PMID: 29947623 DOI: 10.1039/c8an00599k
    Partial least squares-discriminant analysis (PLS-DA) is a versatile algorithm that can be used for predictive and descriptive modelling as well as for discriminative variable selection. However, versatility is both a blessing and a curse and the user needs to optimize a wealth of parameters before reaching reliable and valid outcomes. Over the past two decades, PLS-DA has demonstrated great success in modelling high-dimensional datasets for diverse purposes, e.g. product authentication in food analysis, diseases classification in medical diagnosis, and evidence analysis in forensic science. Despite that, in practice, many users have yet to grasp the essence of constructing a valid and reliable PLS-DA model. As the technology progresses, across every discipline, datasets are evolving into a more complex form, i.e. multi-class, imbalanced and colossal. Indeed, the community is welcoming a new era called big data. In this context, the aim of the article is two-fold: (a) to review, outline and describe the contemporary PLS-DA modelling practice strategies, and (b) to critically discuss the respective knowledge gaps that have emerged in response to the present big data era. This work could complement other available reviews or tutorials on PLS-DA, to provide a timely and user-friendly guide to researchers, especially those working in applied research.
    Matched MeSH terms: Discriminant Analysis
  11. Jamil SZMR, Rohani ER, Baharum SN, Noor NM
    3 Biotech, 2018 Aug;8(8):322.
    PMID: 30034986 DOI: 10.1007/s13205-018-1336-6
    Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
    Matched MeSH terms: Discriminant Analysis
  12. Phatsara M, Das S, Laowatthanaphong S, Tuamsuk P, Mahakkanukrauh P
    Clin Ter, 2016 May-Jun;167(3):72-6.
    PMID: 27424506 DOI: 10.7417/CT.2016.1929
    BACKGROUND: This study was carried out to evaluate the accuracy of sex estimation by discriminant analysis and stepwise discriminant analysis equations generated from metatarsal bones in a Thai population.
    MATERIAL AND METHODS: The testing samples utilized in this study consisted of 50 skeletons (25 males and 25 females) obtained from the Khon Kaen University Skeletal Collection, Department of Anatomy, Faculty of Medicine, Khon Kaen University. Seven measurements of metatarsal bones were measured in centimeters, using either a mini-osteometric board (MOB) or a sliding caliper. The values measured from the Khon Kaen Skeletal Collection were used to determine the accuracy and applicability of sex determination, as predicted by Y1-Y6 equations which were generated from a Chiang Mai Skeletal Collection.
    RESULTS: The percentage of sex determination accuracies predicted from the Y1-Y6 equations demonstrated accuracy rates of 80-95.6.
    CONCLUSIONS: The Chiang Mai sex determination equations, generated from metatarsal bones by discriminant analysis (Y1-Y3) and stepwise discriminant analysis (Y4-Y6), demonstrated high accuracy rates of prediction, suggesting that these equations may be useful for sex determination within the Thai population.
    KEYWORDS: Foot; Metatarsal bones; Sex determination; Thailand
    Matched MeSH terms: Discriminant Analysis
  13. Lee LC, Jemain AA
    Analyst, 2019 Apr 08;144(8):2670-2678.
    PMID: 30849143 DOI: 10.1039/c8an02074d
    In response to our review paper [L. C. Lee et al., Analyst, 2018, 143, 3526-3539], we present a study that compares empirical differences between PLS1-DA and PLS2-DA algorithms in modelling a colossal ATR-FTIR spectral dataset. Over the past two decades, partial least squares-discriminant analysis (PLS-DA) has gained wide acceptance and huge popularity in the field of applied research, partly due to its dimensionality reduction capability and ability to handle multicollinear and correlated variables. To solve a K-class problem (K > 2) using PLS-DA and high-dimensional data like infrared spectra, one can construct either K one-versus-all PLS1-DA models or only one PLS2-DA model. The aim of this work is to explore empirical differences between the two PLS-DA algorithms in modeling a colossal ATR-FTIR spectral dataset. The practical task is to build a prediction model using the imbalanced, high dimensional, colossal and multi-class ATR-FTIR spectra of blue gel pen inks. Four different sub-datasets were prepared from the principal dataset by considering the raw and asymmetric least squares (AsLS) preprocessed forms: (a) Raw-global region; (b) Raw-local region; (c) AsLS-global region; and (d) AsLS-local region. A series of 50 models which includes the first 50 PLS components incrementally was constructed repeatedly using the four sub-datasets. Each model was evaluated using six different variants of v-fold cross validation, autoprediction and external testing methods. As a result, each PLS-DA algorithm was represented by a number of figures of merit. The differences between PLS1-DA and PLS2-DA algorithms were assessed using hypothesis tests with respect to model accuracy, stability and fitting. On the other hand, confusion matrices of the two PLS-DA algorithms were inspected carefully for assessment of model parsimony. Overall, both the algorithms presented satisfactory model accuracy and stability. Nonetheless, PLS1-DA models showed significantly higher accuracy rates than PLS2-DA models, whereas PLS2-DA models seem to be much more stable compared to PLS1-DA models. Eventually, PLS2-DA also proved to be less prone to overfitting and is more parsimonious than PLS1-DA. In conclusion, the relatively high accuracy of the PLS1-DA algorithm is achieved at the cost of rather low parsimony and stability, and with an increased risk of overfitting.
    Matched MeSH terms: Discriminant Analysis
  14. Windarsih A, Bakar NKA, Rohman A, Erwanto Y
    Anal Sci, 2024 Mar;40(3):385-397.
    PMID: 38095741 DOI: 10.1007/s44211-023-00470-x
    Due to the different price and high quality, halal meat such as beef can be adulterated with non-halal meat with low price to get an economical price. The objective of this research was to develop an analytical method for halal authentication testing of beef meatballs (BM) from dog meat (DM) using a non-targeted metabolomics approach employing liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. The differentiation of authentic BM from that adulterated with DM was successfully performed using partial least square-discriminant analysis (PLS-DA) with high accuracy (R2X = 0.980, and R2Y = 0.980) and good predictivity (Q2 = 0.517). In addition, partial least square (PLS) and orthogonal PLS (OPLS) were successfully used to predict the DM added (% w/w) in BM with high accuracy (R2 > 0.990). A number of metabolites, potential for biomarker candidates, were identified to differentiate BM and that adulterated with DM. It showed that the combination of a non-targeted LC-HRMS Orbitrap metabolomics and chemometrics could detect up to 0.1% w/w of DM adulteration. The developed method was successfully applied for analysis of commercial meatball samples (n = 28). Moreover, pathway analysis revealed that beta-alanine, histidine, and ether lipid metabolism were significantly affected by dog meat adulteration. In summary, this developed method has great potential to be developed and used as an alternative method for analysis of non-halal meats in halal meat products.
    Matched MeSH terms: Discriminant Analysis
  15. Aminu M, Ahmad NA
    ACS Omega, 2020 Oct 20;5(41):26601-26610.
    PMID: 33110988 DOI: 10.1021/acsomega.0c03362
    Partial least squares discriminant analysis (PLS-DA) is a well-known technique for feature extraction and discriminant analysis in chemometrics. Despite its popularity, it has been observed that PLS-DA does not automatically lead to extraction of relevant features. Feature learning and extraction depends on how well the discriminant subspace is captured. In this paper, discriminant subspace learning of chemical data is discussed from the perspective of PLS-DA and a recent extension of PLS-DA, which is known as the locality preserving partial least squares discriminant analysis (LPPLS-DA). The objective is twofold: (a) to introduce the LPPLS-DA algorithm to the chemometrics community and (b) to demonstrate the superior discrimination capabilities of LPPLS-DA and how it can be a powerful alternative to PLS-DA. Four chemical data sets are used: three spectroscopic data sets and one that contains compositional data. Comparative performances are measured based on discrimination and classification of these data sets. To compare the classification performances, the data samples are projected onto the PLS-DA and LPPLS-DA subspaces, and classification of the projected samples into one of the different groups (classes) is done using the nearest-neighbor classifier. We also compare the two techniques in data visualization (discrimination) task. The ability of LPPLS-DA to group samples from the same class while at the same time maximizing the between-class separation is clearly shown in our results. In comparison with PLS-DA, separation of data in the projected LPPLS-DA subspace is more well defined.
    Matched MeSH terms: Discriminant Analysis
  16. Abbas, F.M.A., Saifullah, R., Azhar, M.E.
    MyJurnal
    Physical properties of ripe banana flour were studied in Cavendish and Dream banana, in order to distinguish the two varieties. Flour was analyzed for pH, total soluble solids (TSS), water holding capacity
    (WHC) and oil holding capacity (OHC) at 40, 60 and 80 °C, color values L*, a* and b*, back extrusion force
    and viscosity. Physical properties data were analyzed by cluster analysis (CA) and discriminant analysis (DA). CA showed that the two types of flour were different in terms of selected physical properties. DA indicated that WHC at 60 °C was the main contributor in discriminating the two types of flour.
    Matched MeSH terms: Discriminant Analysis
  17. Raja Zubaidah Raja Sabaradin, Norashikin Saim, Rozita Osman, Hafizan Juahir
    MyJurnal
    Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been recognised as an effective technique to analyse car paint. This study was conducted to assess the combination of Py-GC-MS and chemometric techniques to classify car paint primer, the inner layer of car paint system. Fifty car paint primer samples from various manufacturers were analysed using Py-GC-MS, and data set of identified pyrolysis products was subjected to principal component analysis (PCA) and discriminant analysis (DA). The PCA rendered 16 principal components with 86.33% of the total variance. The DA was useful to classify the car paint primer samples according to their types (1k and 2k primer) with 100% correct classification in the test set for all three modes (standard, stepwise forward and stepwise backward). Three compounds, indolizine, 1,3-benzenedicarbonitrile and p-terphenyl, were the most significant compounds in discriminating the car paint primer samples.
    Matched MeSH terms: Discriminant Analysis
  18. Dominic JA, Aris AZ, Sulaiman WN, Tahir WZ
    Environ Monit Assess, 2016 Mar;188(3):191.
    PMID: 26914327 DOI: 10.1007/s10661-016-5192-8
    The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m(3) s(-1), representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size > 0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5%. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20%) compared to group 2 (16.90 to 45.55%). Two Fisher's linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1 = -9.405 + 4232.119 × A - 1795.805 × B + 281.224 × C, and F 2 = -2.842 + 2725.137 × A - 1307.688 × B + 231.353 × C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m(3) s(-1), respectively. The model correctly predicts 88.9 and 100.0% of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8% are correctly classified. The model predicts that 31.4% of the model domain areas consist of high-sand mass composition areas and the remaining 68.6% comprise low-sand mass composition areas.
    Matched MeSH terms: Discriminant Analysis*
  19. Siti Waznah Abdurahman, Mohd Azmi Ambak, Shahreza Md Sheriff, Ying GS, Ahmad Azfar Mohamed, Ahmed Jalal Khan Chowdhury
    Sains Malaysiana, 2016;45:1-7.
    Ariid catfishes, belong to family Ariidae is considered as one of the taxonomically problematic groups, which is still under review by fish taxonomist globally. Species level identification of some ariids often resulted in species misidentification because of their complex characters and very similar morphological characters within genera. A vigilant and detail observation is very important during the species level identification of ariid species. In these contexts, this study was carried out in order to determine the morphological variations of one of the ariid genera, Plicofollis, which have been giving misleading taxonomic information in the south-east Asian countries. A Truss network technique was used throughout the study period. The study was conducted based on 20 truss measurements using 22 to 23 specimens per species, namely P. argyropleuron, P. nella and P. tenuispinis found in Peninsular Malaysian waters. Morphological variations were determined using a multivariate technique of discriminant function analysis (DFA). The results obtained in this study showed that discriminant analysis using truss network measurements has produced very clear separations of all the species in Plicofollis group. Several important morphological characters have been identified, which represent body depth and caudal regions of the fish. The documentary evidences of these variables could be considered as the constructive functional features, which could enable us to assess more accurately to distinguish the species within this complex Ariidae family.
    Matched MeSH terms: Discriminant Analysis
  20. Dhiman Gain, Mahfuj M, Islam S, Minar M, Goutham-Bharathi M, Simon Kumar Das
    Sains Malaysiana, 2017;46:695-702.
    Wild stocks of endangered mrigal carp, Cirrhinus cirrhosus (Bloch 1795), continues to decline rapidly in the Indo-Ganges river basin. With an objective to evaluate its population status, landmark-based morphometric and meristic variations among three different stocks viz., hatchery (Jessore), baor (Gopalganj) and river (Faridpur) in Bangladesh were studied. Significant differences were observed in 10 of the 15 morphometric measurements viz., head length, standard length, fork length, length of base of spinous, pre-orbital length, eye length, post-orbital length, length of upper jaw, height of pelvic fin and barbel length, two of the 8 meristic counts viz., scales above the lateral line and pectoral fin rays and 10 of the 22 truss network measurements viz., 1 to 10, 2 to 3, 2 to 8, 2 to 9, 2 to 10, 3 to 4, 3 to 8, 4 to 5, 4 to 7 and 9 to 10 among the stocks. For morphometric and landmark measurements, the 1st discriminant function (DF) accounted for 58.1% and the 2nd DF accounted for 41.9% of the among-group variability. In discriminant space, the river stock was isolated from the other two stocks. On the other hand, baor and hatchery stocks formed a very compact cluster. A dendrogram based on the hierarchical cluster analysis using morphometric and truss distance data placed the hatchery and baor in one cluster and the river in another cluster and the distance between the river and hatchery populations was the highest. Morphological differences among stocks are expected, because of their geographical isolation and their origin from different ancestors. The baseline information derived from the present study would be useful for genetic studies and in the assessment of environmental impacts on C. cirrhosus populations in Bangladesh.
    Matched MeSH terms: Discriminant Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links