Displaying publications 81 - 100 of 118 in total

Abstract:
Sort:
  1. Chia PY, Haseeb ASMA, Mannan SH
    Materials (Basel), 2016 May 31;9(6).
    PMID: 28773552 DOI: 10.3390/ma9060430
    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu₃Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)₆Sn₅ and (Cu,Ni)₃Sn, respectively. Details of the reaction sequence and mechanisms are discussed.
    Matched MeSH terms: Electronics
  2. Adzhri R, Md Arshad MK, Gopinath SC, Ruslinda AR, Fathil MF, Ayub RM, et al.
    Anal Chim Acta, 2016 Apr 21;917:1-18.
    PMID: 27026595 DOI: 10.1016/j.aca.2016.02.042
    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications.
    Matched MeSH terms: Electronics
  3. Sidhu P, Shankargouda S, Dicksit DD, Mahdey HM, Muzaffar D, Arora S
    J Endod, 2016 Apr;42(4):622-5.
    PMID: 26850688 DOI: 10.1016/j.joen.2015.12.027
    INTRODUCTION: Use of mobile phone has been prohibited in many hospitals to prevent interference with medical devices. Electromagnetic radiation emitted from cellular phones might interfere with electronic working length determination. The purpose of this in vitro study was to evaluate the effect of a smart phone (Samsung Galaxy Note Edge) on working length determination of electronic apex locators (EALs) Propex II and Rootor.

    METHODS: Fifteen intact, non-carious single-rooted teeth were decoronated at the cementoenamel junction. Visually, working length was determined by using a #15 K-file under stereomicroscope (×20). The effect of cellular phones on electronic working length (EWL) was determined under 2 experimental settings: (1) in a closed room with poor signal strength and (2) in a polyclinic set up with good signal strength and 5 conditions: (1) electronically, without cellular phone in room; (2) electronically, with cellular phone in physical contact with EAL; (3) electronically, with mobile phone in physical contact with EAL and in calling mode for a period of 25 seconds; (4) electronically, mobile phone placed at a distance of 40 cm from the EAL; and (5) electronically, mobile phone placed at a distance of 40 cm and in calling mode for a period of 25 seconds. The EWL was measured 3 times per tooth under each condition. Stability of the readings was scored from 1 to 3: (1) good stability, (2) stable reading after 1 attempt, and (3) stable reading after 2 attempts. The data were compared by using analysis of variance.

    RESULTS: The EWL measurements were not influenced by the presence of cellular phone and could be determined under all experimental conditions.

    CONCLUSIONS: Within the limitations of this study, it can be concluded that mobile phones do not interfere with the EWL determination.

    Matched MeSH terms: Electronics, Medical/instrumentation*
  4. Roy S, Ramiah H, Reza AW, Lim CC, Ferrer EM
    PLoS One, 2016;11(7):e0158954.
    PMID: 27391136 DOI: 10.1371/journal.pone.0158954
    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.
    Matched MeSH terms: Electronics, Medical*
  5. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett., 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
    Matched MeSH terms: Electronics
  6. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
    Matched MeSH terms: Electronics, Medical
  7. Al-Ta'ii HM, Periasamy V, Amin YM
    Sensors (Basel), 2015;15(5):11836-53.
    PMID: 26007733 DOI: 10.3390/s150511836
    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
    Matched MeSH terms: Electronics/instrumentation*
  8. Chiari L, Duque HV, Jones DB, Thorn PA, Pettifer Z, da Silva GB, et al.
    J Chem Phys, 2014 Jul 14;141(2):024301.
    PMID: 25028013 DOI: 10.1063/1.4885856
    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
    Matched MeSH terms: Electronics*
  9. Khatir NM, Abdul-Malek Z, Banihashemian SM
    Sensors (Basel), 2014;14(10):19229-41.
    PMID: 25320908 DOI: 10.3390/s141019229
    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25-55 °C) and magnetic fields (0-1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.
    Matched MeSH terms: Electronics
  10. Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A
    Sensors (Basel), 2014;14(12):23843-70.
    PMID: 25615728 DOI: 10.3390/s141223843
    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
    Matched MeSH terms: Electronics, Medical/methods*
  11. Ali MS, Kamarudin SK, Masdar MS, Mohamed A
    ScientificWorldJournal, 2014;2014:103709.
    PMID: 25478581 DOI: 10.1155/2014/103709
    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
    Matched MeSH terms: Electronics*
  12. Vitee N, Ramiah H, Chong WK, Tan GH, Kanesan J, Reza AW
    ScientificWorldJournal, 2014;2014:683971.
    PMID: 25133252 DOI: 10.1155/2014/683971
    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
    Matched MeSH terms: Electronics/instrumentation*; Electronics/methods
  13. Ab Wahab N, Mohd Salleh MK, Ismail Khan Z, Abd Rashid NE
    ScientificWorldJournal, 2014;2014:671369.
    PMID: 25121132 DOI: 10.1155/2014/671369
    Reconfigurable ring filter based on single-side-access ring topology is presented. Using capacitive tuning elements, the electrical length of the ring can be manipulated to shift the nominal center frequency to a desired position. A synthesis is developed to determine the values of the capacitive elements. To show the advantage of the synthesis, it is applied to the reconfigurable filter design using RF lumped capacitors. The concept is further explored by introducing varactor-diodes to continuously tune the center frequency of the ring filter. For demonstration, two prototypes of reconfigurable ring filters are realized using microstrip technology, simulated, and measured to validate the proposed concept. The reconfigured filter using lumped elements is successfully reconfigured from 2 GHz to 984.4 MHz and miniaturized by 71% compared to the filter directly designed at the same reconfigured frequency, while, for the filter using varactor-diodes, the frequency is chosen from 1.10 GHz to 1.38 GHz spreading over 280 MHz frequency range. Both designs are found to be compact with acceptable insertion loss and high selectivity.
    Matched MeSH terms: Electronics/instrumentation*
  14. Rahman LF, Reaz MB, Yin CC, Ali MA, Marufuzzaman M
    PLoS One, 2014;9(10):e108634.
    PMID: 25299266 DOI: 10.1371/journal.pone.0108634
    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2.
    Matched MeSH terms: Electronics, Medical/instrumentation
  15. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Electronics/instrumentation*
  16. Shokrani MR, Khoddam M, Hamidon MN, Kamsani NA, Rokhani FZ, Shafie SB
    ScientificWorldJournal, 2014;2014:963709.
    PMID: 24782680 DOI: 10.1155/2014/963709
    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.
    Matched MeSH terms: Electronics/methods
  17. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Electronics
  18. Lombigit, Lojius, Maslina Ibrahim, Nolida Yusup, Nur Aira Abdul Rahman, Yong, Chong Fong
    MyJurnal
    Pulse Shaping Amplifier (PSA) is an essential component in nuclear spectroscopy system. This
    amplifier has two functions; to shape the output pulse and performs noise filtering. In this paper,
    we describe the procedure for the design and development of a pulse shaping amplifier which can
    be used in a nuclear spectroscopy system. This prototype was developed using high performance
    electronics devices and assembled on a FR4 type printed circuit board. Performance of this
    prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model
    Silena 7611). The test results showed that the performance of this prototype was comparable
    to the commercial spectroscopic amplifier.
    Matched MeSH terms: Electronics
  19. Ahamed NU, Sundaraj K, Poo TS
    Proc Inst Mech Eng H, 2013 Mar;227(3):262-74.
    PMID: 23662342
    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
    Matched MeSH terms: Electronics, Medical
  20. Bakar AA, Lim YL, Wilson SJ, Fuentes M, Bertling K, Taimre T, et al.
    Physiol Meas, 2013 Feb;34(2):281-9.
    PMID: 23363933 DOI: 10.1088/0967-3334/34/2/281
    Optical sensing offers an attractive option for detection of surface biopotentials in human subjects where electromagnetically noisy environments exist or safety requirements dictate a high degree of galvanic isolation. Such circumstances may be found in modern magnetic resonance imaging systems for example. The low signal amplitude and high source impedance of typical biopotentials have made optical transduction an uncommon sensing approach. We propose a solution consisting of an electro-optic phase modulator as a transducer, coupled to a vertical-cavity surface-emitting laser and the self-mixing signal detected via a photodiode. This configuration is physically evaluated with respect to synthesized surface electrocardiographic (EKG) signals of varying amplitudes and using differing optical feedback regimes. Optically detected EKG signals using strong optical feedback show the feasibility of this approach and indicate directions for optimization of the electro-optic transducer for improved signal-to-noise ratios. This may provide a new means of biopotential detection suited for environments characterized by harsh electromagnetic interference.
    Matched MeSH terms: Electronics/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links