Displaying publications 81 - 100 of 401 in total

Abstract:
Sort:
  1. Geetha Bai R, Muthoosamy K, Zhou M, Ashokkumar M, Huang NM, Manickam S
    Biosens Bioelectron, 2017 Jan 15;87:622-629.
    PMID: 27616288 DOI: 10.1016/j.bios.2016.09.003
    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer.
    Matched MeSH terms: Equipment Design
  2. Dalila R N, Md Arshad MK, Gopinath SCB, Norhaimi WMW, Fathil MFM
    Biosens Bioelectron, 2019 May 01;132:248-264.
    PMID: 30878725 DOI: 10.1016/j.bios.2019.03.005
    Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
    Matched MeSH terms: Equipment Design
  3. Sayad A, Ibrahim F, Mukim Uddin S, Cho J, Madou M, Thong KL
    Biosens Bioelectron, 2018 Feb 15;100:96-104.
    PMID: 28869845 DOI: 10.1016/j.bios.2017.08.060
    Outbreaks of foodborne diseases have become a global health concern; hence, many improvements and developments have been made to reduce the risk of food contamination. We developed a centrifugal microfluidic automatic wireless endpoint detection system integrated with loop mediated isothermal amplification (LAMP) for monoplex pathogen detection. Six identical sets were designed on the microfluidic compact disc (CD) to perform 30 genetic analyses of three different species of foodborne pathogens. The consecutive loading, mixing, and aliquoting of the LAMP primers/reagents and DNA sample solutions were accomplished using an optimized square-wave microchannel, metering chambers and revulsion per minute (RPM) control. We tested 24 strains of pathogenic bacteria (Escherichia coli, Salmonella spp and Vibrio cholerae), with 8 strains of each bacterium, and performed DNA amplification on the microfluidic CD for 60min. Then, the amplicons of the LAMP reaction were detected using the calcein colorimetric method and further analysed via the developed electronic system interfaced with Bluetooth wireless technology to transmit the results to a smartphone. The system showed a limit of detection (LOD) of 3 × 10-5ngμL-1 DNA by analysing the colour change when tested with chicken meat spiked with the three pathogenic bacteria. Since the entire process was performed in a fully automated way and was easy to use, our microdevice is suitable for point-of-care (POC) testing with high simplicity, providing affordability and accessibility even to poor, resource-limited settings.
    Matched MeSH terms: Equipment Design
  4. Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, et al.
    Biosens Bioelectron, 2018 Jun 01;107:145-152.
    PMID: 29455024 DOI: 10.1016/j.bios.2018.02.024
    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL-1. Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature.
    Matched MeSH terms: Equipment Design
  5. Yahaya ML, Zakaria ND, Noordin R, Abdul Razak K
    Biotechnol Appl Biochem, 2021 Oct;68(5):1095-1106.
    PMID: 32935878 DOI: 10.1002/bab.2029
    Salmonella and Shigella genera are common pathogens that contaminate foods and beverages. Lateral flow assays (LFA) are commonly used to detect these pathogens. However, most of the developed LFAs are for single detection. Simultaneous detection of pathogens is required to reduce cost and time. In this work, 40 nm gold nanoparticles (AuNPs) were synthesized using the seeding growth method as labeling agent. The AuNPs were characterized and conjugated with mouse anti-Gram negative endotoxin antibody. The nitrocellulose membrane HF135 was immobilized with anti-mouse IgG antibody as a control line and two separate test lines with either anti-Shigella or anti-Salmonella antibody, respectively. Color intensity of test lines was observed for positive samples. A milk sample was used as proof of concept to mimic actual contamination. The limit of detection of the LFA was 3.0 × 106 CFU/mL for multiplex detection of Shigella flexneri and Salmonella Typhi and for both single detections. The result was comparable with the enzyme-linked immunosorbent assay (ELISA) analysis. The produced LFA could differentiate between Shigella flexneri, Shigella boydii, Salmonella Enteritidis, and Salmonella Typhi. The developed LFA was able to identify Shigella flexneri and Salmonella Typhi with good sensitivity in milk samples, thus, beneficial to ensure the safety of food before entering the market.
    Matched MeSH terms: Equipment Design
  6. Fiedler P, Pedrosa P, Griebel S, Fonseca C, Vaz F, Supriyanto E, et al.
    Brain Topogr, 2015 Sep;28(5):647-656.
    PMID: 25998854 DOI: 10.1007/s10548-015-0435-5
    Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the design of a novel 24-pin dry electrode made from polyurethane and coated with Ag/AgCl. A textile cap system holds 97 of these dry electrodes. An EEG study with 20 volunteers compares the 97-channel dry EEG cap with a conventional 128-channel wet EEG cap for resting state EEG, alpha activity, eye blink artifacts and checkerboard pattern reversal visual evoked potentials. All volunteers report a good cap fit and good wearing comfort. Average impedances are below 150 kΩ for 92 out of 97 dry electrodes, enabling recording with standard EEG amplifiers. No significant differences are observed between wet and dry power spectral densities for all EEG bands. No significant differences are observed between the wet and dry global field power time courses of visual evoked potentials. The 2D interpolated topographic maps show significant differences of 3.52 and 0.44% of the map areas for the N75 and N145 VEP components, respectively. For the P100 component, no significant differences are observed. Dry multipin electrodes integrated in a textile EEG cap overcome the principle limitations of wet electrodes, allow rapid application of EEG multichannel caps by non-trained persons, and thus enable new fields of application for multichannel EEG acquisition.
    Matched MeSH terms: Equipment Design/instrumentation*
  7. Wan Ibadullah WH, Yahya N, Ghazali SS, Kamaruzaman E, Yong LC, Dan A, et al.
    Braz J Anesthesiol, 2016 Jul-Aug;66(4):363-8.
    PMID: 27343785 DOI: 10.1016/j.bjane.2014.11.013
    BACKGROUND AND OBJECTIVE: This was a prospective, randomized clinical study to compare the success rate of nasogastric tube insertion by using GlideScope™ visualization versus direct MacIntosh laryngoscope assistance in anesthetized and intubated patients.

    METHODS: Ninety-six ASA I or II patients, aged 18-70 years were recruited and randomized into two groups using either technique. The time taken from insertion of the nasogastric tube from the nostril until the calculated length of tube had been inserted was recorded. The success rate of nasogastric tube insertion was evaluated in terms of successful insertion in the first attempt. Complications associated with the insertion techniques were recorded.

    RESULTS: The results showed success rates of 74.5% in the GlideScope™ Group as compared to 58.3% in the MacIntosh Group (p=0.10). For the failed attempts, the nasogastric tube was successfully inserted in all cases using rescue techniques. The duration taken in the first attempt for both techniques was not statistically significant; Group A was 17.2±9.3s as compared to Group B, with a duration of 18.9±13.0s (p=0.57). A total of 33 patients developed complications during insertion of the nasogastric tube, 39.4% in Group A and 60.6% in Group B (p=0.15). The most common complications, which occurred, were coiling, followed by bleeding and kinking.

    CONCLUSION: This study showed that using the GlideScope™ to facilitate nasogastric tube insertion was comparable to the use of the MacIntosh laryngoscope in terms of successful rate of insertion and complications.
    Matched MeSH terms: Equipment Design
  8. Rosenberg M, Waliszewski M, Chin K, Ahmad WAW, Caramanno G, Milazzo D, et al.
    Catheter Cardiovasc Interv, 2019 02 01;93(2):181-188.
    PMID: 30280482 DOI: 10.1002/ccd.27724
    OBJECTIVES: This prospective, observational all-comers registry assessed the safety and efficacy of a Drug Coated Balloon-only strategy (DCB-only) in patients with coronary lesions.

    BACKGROUND: Data regarding the performance of a DCB-only approach, especially in patients with previously untreated de-novo coronary artery disease (CAD), are still limited.

    METHODS: This study was conducted as an international, multicenter registry primarily enrolling patients with de-novo CAD. However, it was also possible to include patients with in-stent restenosis (ISR). The primary endpoint was the rate of clinically driven target lesion revascularization (TLR) after 9 months.

    RESULTS: A total of 1,025 patients with a mean age of 64.0 ± 11.2 years were enrolled. The majority of treated lesions were de-novo (66.9%), followed by drug-eluting-stent ISR (DES-ISR; 22.6%) and bare-metal-stent ISR (BMS-ISR; 10.5%). The TLR rate was lower in the de-novo group (2.3%) when compared to BMS- (2.9%) and DES-ISR (5.8%) (P = 0.049). Regarding MACE, there was a trend toward fewer events in the de-novo group (5.6%) than in the BMS- (7.8%) and DES-ISR cohort (9.6%) (P = 0.131). Subgroup analyses revealed that lesion type (95% CI 1.127-6.587); P = 0.026) and additional stent implantation (95% CI 0.054-0.464; P = 0.001) were associated with higher TLR rates.

    CONCLUSIONS: Our results show that DCB-only angioplasty of de-novo coronary lesions is associated with low MACE and TLR rates. Thus, DCBs appear to be an attractive alternative for the interventional, stentless treatment of suitable de-novo coronary lesions.

    Matched MeSH terms: Equipment Design
  9. Lukman SK, Al-Ashwal RH, Sultana N, Saidin S
    Chem Pharm Bull (Tokyo), 2019;67(5):445-451.
    PMID: 31061369 DOI: 10.1248/cpb.c18-00847
    Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.
    Matched MeSH terms: Equipment Design
  10. Ali S, Osman NA, Mortaza N, Eshraghi A, Gholizadeh H, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2012 Nov;27(9):943-8.
    PMID: 22795863 DOI: 10.1016/j.clinbiomech.2012.06.004
    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. Liners provide a comfortable interface by adding a soft cushion between the residual limb and the socket. The Dermo and the Seal-In X5 liner are two new interface systems and, due to their relative infancy, very little are known about their effect on patient satisfaction. The aim of this study was to compare the interface pressure with these two liners and their effect on patient satisfaction.
    Matched MeSH terms: Equipment Design
  11. Gholizadeh H, Osman NA, Kamyab M, Eshraghi A, Abas WA, Azam MN
    Clin Biomech (Bristol, Avon), 2012 Jan;27(1):34-9.
    PMID: 21794965 DOI: 10.1016/j.clinbiomech.2011.07.004
    The method of attachment of prosthesis to the residual limb (suspension) and socket fitting is a critical issue in the process of providing an amputee with prosthesis. Different suspension methods try to minimize the pistoning movement inside the socket. The Seal-In(®) X5 and Dermo(®) Liner by Ossur are new suspension liners that intend to reduce pistoning between the socket and liner. Since the effects of these new liners on suspension are unclear, the objective of this study was to compare the pistoning effect of Seal-In(®) X5 and Dermo(®) Liner by using Vicon Motion System.
    Matched MeSH terms: Equipment Design
  12. Williams DP, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF, Koenig J
    Clin Physiol Funct Imaging, 2017 Nov;37(6):776-781.
    PMID: 26815165 DOI: 10.1111/cpf.12321
    Recently, research has validated the use of Polar® heart rate monitors as a tool to index heart rate variability (HRV). In the current investigation, we sought to evaluate the test-retest reliability of both time and frequency domain measures of HRV using the Polar® RS800CX™ . Continuous HRV data were collected as 60 nominally healthy adults underwent a resting and orthostatic stress test. We evaluated reproducibility by means of the interclass correlation coefficient for absolute agreement and consistency, and the standard error of measurement. We found moderate reliable 2-week test-retest reliability of HRV using the Polar® RS800CX™ , results that are in line with previous studies that have validated the stability of HRV using other methods of measurement (e.g. electrocardiogram). Additionally, when examining different methods of spectral density estimation, we found that using the auto-regressive transformation method provides the most stable indices of HRV. Taken together, our results suggest that the Polar® RS800CX™ is not only a valid method to record HRV, but also a reliable one, particularly when using the auto-regressive transformation method.
    Matched MeSH terms: Equipment Design
  13. Al-Qaysi ZT, Zaidan BB, Zaidan AA, Suzani MS
    Comput Methods Programs Biomed, 2018 Oct;164:221-237.
    PMID: 29958722 DOI: 10.1016/j.cmpb.2018.06.012
    CONTEXT: Intelligent wheelchair technology has recently been utilised to address several mobility problems. Techniques based on brain-computer interface (BCI) are currently used to develop electric wheelchairs. Using human brain control in wheelchairs for people with disability has elicited widespread attention due to its flexibility.

    OBJECTIVE: This study aims to determine the background of recent studies on wheelchair control based on BCI for disability and map the literature survey into a coherent taxonomy. The study intends to identify the most important aspects in this emerging field as an impetus for using BCI for disability in electric-powered wheelchair (EPW) control, which remains a challenge. The study also attempts to provide recommendations for solving other existing limitations and challenges.

    METHODS: We systematically searched all articles about EPW control based on BCI for disability in three popular databases: ScienceDirect, IEEE and Web of Science. These databases contain numerous articles that considerably influenced this field and cover most of the relevant theoretical and technical issues.

    RESULTS: We selected 100 articles on the basis of our inclusion and exclusion criteria. A large set of articles (55) discussed on developing real-time wheelchair control systems based on BCI for disability signals. Another set of articles (25) focused on analysing BCI for disability signals for wheelchair control. The third set of articles (14) considered the simulation of wheelchair control based on BCI for disability signals. Four articles designed a framework for wheelchair control based on BCI for disability signals. Finally, one article reviewed concerns regarding wheelchair control based on BCI for disability signals.

    DISCUSSION: Since 2007, researchers have pursued the possibility of using BCI for disability in EPW control through different approaches. Regardless of type, articles have focused on addressing limitations that impede the full efficiency of BCI for disability and recommended solutions for these limitations.

    CONCLUSIONS: Studies on wheelchair control based on BCI for disability considerably influence society due to the large number of people with disability. Therefore, we aim to provide researchers and developers with a clear understanding of this platform and highlight the challenges and gaps in the current and future studies.

    Matched MeSH terms: Equipment Design
  14. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
    Matched MeSH terms: Equipment Design
  15. Al Aradi IK
    Dermatol Surg, 2006 Oct;32(10):1244-50.
    PMID: 17034373
    Management of periorbital syringomas is problematic and avoided by many inexperienced physicians. The medical literature presently prefers CO(2) laser resurfacing to many other modalities, but the subject of electrosurgery has not been well explored.
    Matched MeSH terms: Equipment Design
  16. Jalal Abdullah S, Shaikh Mohammed J
    Disabil Rehabil Assist Technol, 2019 11;14(8):849-858.
    PMID: 30556753 DOI: 10.1080/17483107.2018.1539130
    Purpose: Some wheelchair users continue to struggle in maneuvering a wheelchair and navigating through manual doors. Several smart wheelchairs and robotic manipulators were developed to minimize such challenges facing disabled people. Disappointingly, a majority of these high-tech solutions are restricted to laboratories and are not extensively available as commercial products. Previously, a low-tech wheelchair accessory (arc-shaped with many wheels) for pushing doors was modelled and simulated. This work demonstrates the fabrication and testing of the first-generation prototype of the accessory.Materials and methods: The accessory has side portions with a straight arrangement of wheels and a front portion with a straight-arc-straight arrangement of wheels. The accessory was fabricated using conventional manufacturing, off-the-shelf components, and 3D printed ABS fasteners. Stress analysis simulations were done for the fasteners that attach the front accessory to the wheelchair frame. The proof-of-concept of the prototype installed onto a powered wheelchair was tested with a door and an obstacle, each with ∼50 N resistance force.Results: Prototype tests demonstrate the ability of the accessory along with the mechanical robustness of the 3D printed fasteners to push open doors allowing easy navigation through doors and to push/glide against obstacles. The accessory is foldable and detachable.Conclusion: The low-cost of the accessory makes it affordable to many users intending to improve their quality of life. The current study provides an engineering perspective of the accessory, and a clinical perspective is crucial. Other potential applications of the wheelchair accessory include use with scooters, walkers and stretchers.Implications for rehabilitationLow-cost, low-tech accessory is foldable and detachable.Accessory is effective for pushing doors and pushing/gliding against obstacles.Protective nature of the front accessory could prove highly beneficial to some wheelchair users.
    Matched MeSH terms: Equipment Design/economics*; Equipment Design/methods*
  17. Husin MH, Lim YK
    Disabil Rehabil Assist Technol, 2020 08;15(6):701-707.
    PMID: 31729282 DOI: 10.1080/17483107.2019.1615999
    Background/Purpose: Visual impairment is a disability more commonly caused by diseases that lead to several disadvantages to the daily activities amongst those blind. For almost a century since the white cane was first introduced, the cane has remained as the most reliable tool for those affected by blindness.Methods: By using a combination of the capabilities of Internet of Things (IoT) and existing devices, such as mobile phones, an InWalker system is proposed to expand the functionality of the typical white cane, so as to introduce several new features that enhance the safety and confidence amongst people who are blind. As such, this paper explores the existing works and projects to comprehend the motivation and the standard practices for each proposed feature. Each of the strength and drawback has been assessed thoroughly to refine the scope of this project.Results: The proposed project, InWalker, is an intelligent system that has an embedded board system with various sensors to enhance the usability of white cane. The inputs from the sensor are processed on a microcontroller, which then pass the data to a smartphone via Bluetooth for additional features, such as global positioning system (GPS) tracking and SMS services.Conclusions: Based on the initial user testing, the proposed system has successfully fulfilled most of the users' need.Implication for RehabilitationVisual impairment is a disability more commonly caused by diseases that lead to several disadvantages amongst those blind.The white cane has been seen as the most reliable tool for the visual impaired.This tool could be further improved with the integration of additional sensors that works with today's mobile devices.The proposed system, InWalker, is able to improve the overall quality of life among people who are blind through several features: obstacle detection, GPS tracking and a light illumination in dark environments for increased safety.
    Matched MeSH terms: Equipment Design*
  18. Mairami FF, Allotey P, Warren N, Mak JS, Reidpath DD
    Disabil Rehabil Assist Technol, 2018 10;13(7):658-664.
    PMID: 28836873 DOI: 10.1080/17483107.2017.1369586
    BACKGROUND: Stroke is a leading cause of disability that limits everyday activities and reduces social participation. Provision of assistive devices helps to achieve independence and social inclusion. However, due to limited resources or a lack of suited objects for their needs, individuals with disabilities in low and middle income countries (LMIC) often do not have access to assistive devices. This has resulted in the creation of purpose built innovative solutions. Methodology and case content: This paper uses a single case derived from a larger ethnographic study of stroke survivors in rural Malaysia to demonstrate the role of assistive devices in shaping stroke recovery and how existing structures can be modified. Second, the concept of affordances in relation to structures within the environment, issues of affordability and accessibility of assistive devices for individuals in LMIC are discussed.

    FINDINGS AND CONCLUSIONS: Stroke recovery involves adapting to new limitations and discovering the support necessary to live life. These changes are influenced by a range of environmental factors. Healthcare professionals need to support stroke patients in identifying challenges and work to find innovative ways to address them. Stroke survivors may benefit from the use of an assistive device beyond its clinical function to participate purposefully in activities of daily living. Implications for Rehabilitation Stroke is a cause of disability that limits everyday activities and reduces social participation. Assistive devices help achieve independence, social inclusion and shape stroke recovery. Individuals with disabilities in low and middle income countries often do not have access to assistive devices and resort to innovative solutions that are purpose built. Stroke recovery involves adapting to new limitations and discovering the support necessary to live life as best as possible.

    Matched MeSH terms: Equipment Design
  19. Raman R, Prepageran N
    Ear Nose Throat J, 2004 Apr;83(4):270.
    PMID: 15147098
    The authors describe a novel way of fashioning an endoscope holder from a common retractor and an ear speculum. Using such a device during endoscopic sinus surgery leaves both of the surgeon's hands free to manipulate the instruments.
    Matched MeSH terms: Equipment Design
  20. Lian Z, Chan Y, Luo Y, Yang X, Koh KS, Wang J, et al.
    Electrophoresis, 2020 06;41(10-11):891-901.
    PMID: 31998972 DOI: 10.1002/elps.201900403
    Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10-4 to 4.64 × 10-4 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.
    Matched MeSH terms: Equipment Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links