METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.
RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.
CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.
MATERIALS AND METHODS: We searched candidate genes from the schizophrenia database and performed a comprehensive meta-analysis using all the available data up to August 2017. The association between susceptible SNPs and schizophrenia was assessed by the pooled odds ratio with 95% confidence interval using fixed-effect and random-effect models.
RESULTS: A total of 21 studies including 8291 cases and 9638 controls were used for meta-analysis. Three investigated SNPs were rs165599, rs3737597, and rs1047631 of COMT, DISC1, and DTNBP1, respectively. Our results suggested that rs3737597 showed a significant association with schizophrenia in Europeans (odds ratio: 1.584, P: 0.002, 95% confidence interval: 1.176-2.134) under a random-effect framework.
CONCLUSION: This meta-analysis indicated that rs3737597 of DISC1 was significantly associated with schizophrenia in Europeans, and it can be suggested as an ethnic-specific risk genetic factor.
METHODS: We herein report, to our knowledge, the first observation on the frequency and nature of GATA1 gene mutations in a cohort of Malaysian children with DS-associated TAM (n = 9) and ML-DS (n = 24) encountered successively over a period of five years at a national referral centre.
RESULTS: Of the 29 patients who underwent GATA1 analysis, GATA1 mutations were observed in 15 (51.7%) patients, including 6 (75.0%) out of 8 patients with TAM, and 9 (42.9%) of 21 patients with ML-DS. All identified mutations were located in exon 2 and the majority were sequence-terminating insertions or deletions (66.7%), including several hitherto unreported mutations (12 out of 15).
CONCLUSION: The low frequency of GATA1 mutations in ML-DS patients is unusual and potentially indicates distinctive genomic events in our patient cohort.
SETTING: Cohort study.
PARTICIPANTS: Twelve biologically unrelated Malaysian-Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high thyrotropin and low free thyroxine levels at the time of diagnosis with proven presence of a thyroid gland.
PRIMARY OUTCOME MEASURE: Screening of the c.2268dup mutation in the TPO gene in all patients was carried out using a PCR-direct DNA sequencing method.
SECONDARY OUTCOME MEASURE: Further screening for mutations in other exonic regions of the TPO gene was carried out if the patient was a carrier of the c.2268dup mutation.
RESULTS: The c.2268dup mutation was detected in 4 of the 12 patients. Apart from the c.2268dup and a previously documented mutation (c.2647C>T), two novel TPO alterations, c.670_672del and c.1186C>T, were also detected in our patients. In silico analyses predicted that the novel alterations affect the structure/function of the TPO protein.
CONCLUSIONS: The c.2268dup mutation was detected in approximately one-third of the Malaysian-Chinese patients with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid dyshormonogenesis.