Displaying publications 81 - 100 of 106 in total

Abstract:
Sort:
  1. Sundram K, Khor HT, Ong AS, Pathmanathan R
    Cancer Res, 1989 Mar 15;49(6):1447-51.
    PMID: 2493981
    Female Sprague-Dawley rats, 50 days of age, were treated with a single dose of 5 mg of 7,12-dimethylbenz(a)anthracene intragastrically. 3 days after carcinogen treatment, the rats were put on semisynthetic diets containing 20% by weight of corn oil (CO), soybean oil (SBO), crude palm oil (CPO), refined, bleached, deodorized palm oil (RBD PO) and metabisulfite-treated palm oil (MCPO) for 5 months. During the course of experiments, rats fed on different dietary fats had similar rate of growth. Rats fed 20% CO or SBO diet have higher tumor incidence than rats fed on palm oil (PO) diets; however differences of mean tumor latency periods among the groups were not statistically significant. At autopsy, rats fed on high CO or SBO diets had significantly more tumors than rats fed on the three PO diets. Our results showed that high PO diets did not promote chemically induced mammary tumorigenesis in female rats when compared to high CO or SBO diets. CO and SBO differ greatly from the palm oils in their contents of tocopherols, tocotrienols, and carotenes. But further experiments would be required to determine whether the observed differences in tumor incidence and tumor numbers were due to the differences in these minor components or due to the unique triglyceride structure of the palm oils. Analysis of the fatty acid profiles of plasma total lipids of tumor-bearing rats and of the tumor total lipids showed that, with the exception of arachidonic acid, the fatty acid profiles reflect the nature of the dietary fats. At autopsy, there were no differences in the plasma total cholesterol contents among rats fed on different dietary fats, but rats fed on palm oil diets had a significantly higher plasma triglyceride level than that of rats fed CO or SBO diets. As for the tumor lipids, there were no significant differences in the triglyceride, diglyceride, and phospholipid levels when the CO or SBO groups were compared to the palm oil groups.
    Matched MeSH terms: Fatty Acids/analysis
  2. Sundram K, Khor HT, Ong AS
    Lipids, 1990 Apr;25(4):187-93.
    PMID: 2345491
    Male Sprague Dawley rats were fed semipurified diets containing 20% fat for 15 weeks. The dietary fats were corn oil, soybean oil, palm oil, palm olein and palm stearin. No differences in the body and organ weights of rats fed the various diets were evident. Plasma cholesterol levels of rats fed soybean oil were significantly lower than those of rats fed corn oil, palm oil, palm olein or palm stearin. Significant differences between the plasma cholesterol content of rats fed corn oil and rats fed the three palm oils were not evident. HDL cholesterol was raised in rats fed the three palm oil diets compared to the rats fed either corn oil or soybean oil. The cholesterol-phospholipid molar ratio of rat platelets was not influenced by the dietary fat type. The formation of 6-keto-PGF1 alpha was significantly enhanced in palm oil-fed rats compared to all other dietary treatments. Fatty acid compositional changes in the plasma cholesterol esters and plasma triglycerides were diet regulated with significant differences between rats fed the polyunsaturated corn and soybean oil compared to the three palm oils.
    Matched MeSH terms: Fatty Acids/analysis
  3. Taha HAIM, Agamy NFM, Soliman TN, Younes NM, El-Enshasy HA, Darwish AMG
    PeerJ, 2024;12:e17007.
    PMID: 38584941 DOI: 10.7717/peerj.17007
    Soybean milk is a rich plant-based source of protein, and phenolic compounds. This study compared the nutritional value of soybean milk, flour, soy protein isolate (SPI) and evaluated the impact of prepared vitamin E/calcium salt/soy protein isolate nanoparticles (ECSPI-NPs) on fortification of developed soybean milk formulations. Results indicated that soybean flour protein content was 40.50 g/100 g, that fulfills 81% of the daily requirement (DV%), the unsaturated fatty acids (USFs), oleic and linoleic content was 21.98 and 56.7%, respectively, of total fatty acids content. In soybean milk, essential amino acids, threonine, leucine, lysine achieved 92.70, 90.81, 77.42% of amino acid scores (AAS) requirement values respectively. Ferulic acid was the main phenolic compound in soybean flour, milk and SPI (508.74, 13.28, 491.78 µg/g). Due to the moisture content of soybean milk (88.50%) against (7.10%) in soybean flour, the latest showed higher nutrients concentrations. The prepared calcium (20 mM/10 g SPI) and vitamin E (100 mg/g SPI) nanoparticles (ECSPI-NPs) exhibited that they were effectively synthesized under transmission electron microscope (TEM), stability in the zeta sizer analysis and safety up to IC50 value (202 ug/mL) on vero cell line. ECSPI-NPs fortification (NECM) enhanced significantly phenolic content (149.49 mg/mL), taste (6.10), texture (6.70) and consumer overall acceptance (6.54). Obtained results encourage the application of the prepared ECSPI-NPs for further functional foods applications.
    Matched MeSH terms: Fatty Acids/analysis
  4. Tang SG, Sieo CC, Kalavathy R, Saad WZ, Yong ST, Wong HK, et al.
    J Food Sci, 2015 Aug;80(8):C1686-95.
    PMID: 26174350 DOI: 10.1111/1750-3841.12947
    A 16-wk feeding experiment was conducted to investigate the effects of a prebiotic, isomaltooligosaccharide (IMO), a probiotic, PrimaLac®, and their combination as a synbiotic on the chemical compositions of egg yolks and the egg quality of laying hens. One hundred and sixty 16-wk-old Hisex Brown pullets were randomly assigned to 4 dietary treatments: (i) basal diet (control), (ii) basal diet + 1% IMO (PRE), (iii) basal diet + 0.1% PrimaLac® (PRO), and (iv) basal diet + 1% IMO + 0.1% PrimaLac® (SYN). PRE, PRO, or SYN supplementation not only significantly (P < 0.05) decreased the egg yolk cholesterol (24- and 28-wk-old) and total saturated fatty acids (SFA; 28-, 32-, and 36-wk-old), but also significantly (P < 0.05) increased total unsaturated fatty acids (UFA; 28-, 32-, and 36-wk-old), total omega 6 and polyunsaturated fatty acids (PUFA), including linoleic and alpha-linolenic acid levels in the eggs (28-wk-old). However, the total lipids, carotenoids, and tocopherols in the egg yolks were similar among all dietary treatments in the 24-, 28-, 32-, and 36-wk-old hens. Egg quality (Haugh unit, relative weights of the albumen and yolk, specific gravity, shell thickness, and yolk color) was not affected by PRE, PRO, or SYN supplementation. The results indicate that supplementations with IMO and PrimaLac® alone or in combination as a synbiotic might be useful for improving the cholesterol content and modifying the fatty acid compositions of egg yolk without affecting the quality of eggs from laying hens between 24 and 36 wk of age.
    Matched MeSH terms: Fatty Acids/analysis
  5. Tarmizi AH, Lin SW, Kuntom A
    J Oleo Sci, 2008;57(5):275-85.
    PMID: 18391476
    Characterisation of fatty acids composition of three palm-based reference materials was carried out through inter-laboratory proficiency tests. Twelve laboratories collaborated in these tests and the fatty acids compositions of palm oil, palm olein and palm stearin were determined by applying the MPOB Test Methods p3.4:2004 and p3.5:2004. Determination of consensus values and their uncertainties were based on the acceptable statistical agreement of results obtained from the collaborating laboratories. The consensus values and uncertainties (%) for each palm oil reference material produced are listed as follows : 0.20% (C12:0), 1.66+/-0.05% (C14:0), 43.39+/-0.39% (C16:0), 0.14+/-0.06% (C16:1), 3.90+/-0.11% (C18:0), 40.95+/-0.23% (C18:1), 9.68+/-0.21% (C18:2), 0.16+/-0.07% (C18:3) and 0.31+/-0.08% (C20:0) for fatty acids composition of palm oil; 0.23+/-0.04% (C12:0), 1.02+/-0.04% (C14:0), 39.66+/-0.19% (C16:0), 0.18+/-0.07% (C16:1), 3.81+/-0.04% (C18:0), 44.01+/-0.08% (C18:1), 10.73+/-0.08% (C18:2), 0.20+/-0.06% (C18:3) and 0.34+/-0.04% (C20:0) for fatty acids composition of palm olein; and 0.20% (C12:0), 1.14+/-0.05% (C14:0), 49.42+/-0.25% (C16:0), 0.16+/-0.08% (C16:1), 4.15+/-0.10% (C18:0), 36.14+/-0.77% (C18:1), 7.95+/-0.29% (C18:2), 0.11+/-0.07% (C18:3) and 0.30+/-0.08% (C20:0) for fatty acids composition of palm stearin.
    Matched MeSH terms: Fatty Acids/analysis*
  6. Tee ES, Ng TK, Chong YH
    Med J Malaysia, 1979 Jun;33(4):334-41.
    PMID: 522746
    Matched MeSH terms: Fatty Acids/analysis*
  7. Teh SS, Lau HLN
    Food Chem, 2021 Mar 15;340:127912.
    PMID: 32916404 DOI: 10.1016/j.foodchem.2020.127912
    Palm-pressed mesocarp oil has been found to contain plenty of naturally occurring valuable phytonutrients. The application and study of the oil are limited, therefore, quality assessment of refined red palm-pressed mesocarp olein (PPMO) is deemed necessary to provide data in widening the applications as a niche products or raw material for the nutraceutical industry. Results showed that refined PPMO has comparable physicochemical properties and oxidative stability with commercial cooking oil, palm olein (PO). The food safety parameters and contaminants (PAH, 3-MCPD ester, 2-MCPD ester, glycidyl ester and trace metals) analyses proven that refined PPMO is safe to be consumed. Besides, refined PPMO contains remarkably greater concentrations of phytonutrients including carotenoids, phytosterols, squalene and vitamin E than PO, postulating its protective health benefits. The overall quality assessment of refined PPMO showed that it is suitable for human consumption and it is a good source for food applications and dietary nutritional supplements.
    Matched MeSH terms: Fatty Acids/analysis
  8. Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2019 Aug 01;68(8):803-808.
    PMID: 31292345 DOI: 10.5650/jos.ess19098
    Refined palm-pressed mesocarp fibre oil (PPFO), which can be obtained from one of the by-products of palm oil milling, palm-pressed mesocarp fibre, is categorized as palm sludge oil. So far, it has been given less attention and underutilized until some recent scientific reports revealing its high content of phytonutrients, carotenoids and vitamin E, which have been proven scientifically to possess anti-oxidant activity. The study evaluated the stability of PPFO as a carrier for plant-based emulsion. PPFO was extracted and examined for its positional distribution of fatty acids, saturation levels and iodine value (IV) using NMR spectroscopy. The PPFO-based emulsion was then prepared and subjected to stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point for 28 days. Phase separation was observed from PPFO-based emulsion stored at 40℃ from day-21 onwards while no creaming found in all the palm olein-based emulsions stored at the three storage temperatures. Nevertheless, results indicated that the PPFO-based emulsion passed all the tests above showing insignificant phase separation (p > 0.05) compared with those of palm olein commonly used in emulsion preparation. The findings suggested that PPFO enriched with valuable phytonutrients could be used as an alternative carrier oil in emulsion formulation, which is an important component in personal care products.
    Matched MeSH terms: Fatty Acids/analysis
  9. Teo CL, Idris A, Zain NAM, Taisir M
    Bioresour Technol, 2014 Dec;173:284-290.
    PMID: 25310864 DOI: 10.1016/j.biortech.2014.09.110
    In the study, the relationship between the quality and intensity of LED illumination with FAMEs produced were investigated. Nannochloropsis sp. was cultivated for 14 days under different intensities of 100, 150 and 200 μmol photons m(-2) s(-1) of red, blue and mixed red blue LED. The findings revealed that suitable combination of LED wavelengths and intensity; (red LED: 150, blue: 100 and mixed red blue: 200 μmol photons m(-2) s(-1)) produced maximum biomass growth and lipid content. It was observed that the quality and intensity of LED significantly influenced the composition of FAMEs. FAMEs produced under blue LED has high degree of unsaturation (DU) and low cetane number while those under red LED has low DU but higher CN. The combination of red blue LED has produced FAMEs with high ignition and lubricating property and also good oxidation stability indicated by the DU and CN values which lies midway between the red and blue.
    Matched MeSH terms: Fatty Acids/analysis*
  10. Van Thuoc D, My DN, Loan TT, Sudesh K
    Int J Biol Macromol, 2019 Dec 01;141:885-892.
    PMID: 31513855 DOI: 10.1016/j.ijbiomac.2019.09.063
    A moderately halophilic bacterium isolated from fermenting shrimp paste, Salinivibrio sp. M318 was found capable of using fish sauce and mixtures of waste fish oil and glycerol as nitrogen and carbon sources, respectively, for poly(3-hydroxybutyrate) (PHB) production. A cell dry weight (CDW) of up to 10 g/L and PHB content of 51.7 wt% were obtained after 48 h of cultivation in flask experiment. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] was synthesized when 1,4-butanediol, γ-butyrolactone, or sodium 4-hydroxybutyrate was added as precursors to the culture medium. The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was achieved by supplying precursors such as sodium valerate, sodium propionate, and sodium heptanoate. Salinivibrio sp. M318 was able to accumulate the above mentioned PHAs during the growth phase. High CDW of 69.1 g/L and PHB content of 51.5 wt% were obtained by strain Salinivibrio sp. M318 after 78 h of cultivation in fed-batch culture. The results demonstrate Salinivibrio sp. M318 to be a promising wild-type bacterium for the production of PHA from aquaculture residues.
    Matched MeSH terms: Fatty Acids/analysis
  11. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Fatty Acids/analysis
  12. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Fatty Acids/analysis
  13. Wong YF, Saad B, Makahleh A
    J Chromatogr A, 2013 May 17;1290:82-90.
    PMID: 23578483 DOI: 10.1016/j.chroma.2013.03.014
    A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.
    Matched MeSH terms: Fatty Acids/analysis*
  14. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z
    Int J Syst Evol Microbiol, 2009 Jun;59(Pt 6):1474-9.
    PMID: 19502338 DOI: 10.1099/ijs.0.001552-0
    A taxonomic study was carried out on strain A-11-3(T), which was isolated from an oil-enriched consortia from the surface seawater of Hong-Deng dock in the Straits of Malacca and Singapore. Cells were aerobic, Gram-negative, non-spore-forming irregular rods. The strain was catalase- and oxidase-negative. It grew on a restricted spectrum of organic compounds, including some organic acids and alkanes. 16S rRNA gene sequence comparisons showed that strain A-11-3(T) was most closely related to the type strains of Alcanivorax jadensis (96.8 % sequence similarity), Alcanivorax borkumensis (96.8 %), Alcanivorax dieselolei (94.8 %), Alcanivorax venustensis (94.2 %) and Alcanivorax balearicus (94.0 %). The predominant fatty acids were C(16 : 0) (31.2 %), C(18 : 1)omega7c (24.8 %), C(18 : 0) (9.6 %), C(12 : 0) (8.3 %), C(16 : 1)omega7c (8.3 %) and C(16 : 0) 3-OH (5.1 %). The G+C content of the genomic DNA was 54.7 mol%. Moreover, the strain produced lipopeptides as its surface-active compounds. According to physiological and biochemical tests, DNA-DNA hybridization results and sequence comparisons of the 16S-23S internal transcribed spacer, the gyrB gene and the alkane hydroxylase gene alkB1, strain A-11-3(T) was affiliated with the genus Alcanivorax but could be readily distinguished from recognized Alcanivorax species. Therefore strain A-11-3(T) represents a novel species of the genus Alcanivorax for which the name Alcanivorax hongdengensis sp. nov. is proposed. The type strain is A-11-3(T) (=CGMCC 1.7084(T)=LMG 24624(T)=MCCC 1A01496(T)).
    Matched MeSH terms: Fatty Acids/analysis
  15. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
    Matched MeSH terms: Fatty Acids/analysis
  16. Yaakub Z, Kamaruddin K, Singh R, Mustafa S, Marjuni M, Ting NC, et al.
    BMC Plant Biol, 2020 Jul 29;20(1):356.
    PMID: 32727448 DOI: 10.1186/s12870-020-02563-5
    BACKGROUND: Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils' fatty acid composition for wider application, is important.

    RESULTS: This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively.

    CONCLUSIONS: Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.

    Matched MeSH terms: Fatty Acids/analysis
  17. Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL
    Antonie Van Leeuwenhoek, 2021 Jul;114(7):1091-1106.
    PMID: 33895907 DOI: 10.1007/s10482-021-01580-0
    Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
    Matched MeSH terms: Fatty Acids/analysis
  18. Yang X, Xiang R, Iqbal NM, Duan YH, Zhang XA, Wang L, et al.
    Curr Microbiol, 2021 Apr;78(4):1648-1655.
    PMID: 33651189 DOI: 10.1007/s00284-021-02431-x
    Phycosphere hosts the boundary of unique holobionts harboring dynamic algae-bacteria interactions. During our investigating the microbial consortia composition of phycosphere microbiota (PM) derived from diverse harmful algal blooms (HAB) dinoflagellates, a novel rod-shaped, motile and faint yellow-pigmented bacterium, designated as strain LZ-6 T, was isolated from HAB Alexandrium catenella LZT09 which produces high levels paralytic shellfish poisoning toxins. Phylogenetic analysis based on 16S rRNA gene and two housekeeping genes, rpoA and pheS sequences showed that the novel isolate shared the highest gene similarity with Marinobacter shengliensis CGMCC 1.12758 T (99.6%) with the similarity values of 99.6%, 99.9% and 98.5%, respectively. Further phylogenomic calculations of average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains LZ-6 T and the type strain of M. shengliensis were 95.9%, 96.4% and 68.5%, respectively. However, combined phenotypic and chemotaxonomic characterizations revealed that the new isolate was obviously different from the type strain of M. shengliensis. The obtained taxonomic evidences supported that strain LZ-6 T represents a novel subspecies of M. shengliensis, for which the name is proposed, Marinobacter shengliensis subsp. alexandrii subsp. nov. with the type strain LZ-6 T (= CCTCC AB 2018388TT = KCTC 72197 T). This proposal automatically creates Marinobacter shengliensis subsp. shengliensis for which the type strain is SL013A34A2T (= LMG 27740 T = CGMCC 1.12758 T).
    Matched MeSH terms: Fatty Acids/analysis
  19. Yap SC, Choo YM, Hew NF, Yap SF, Khor HT, Ong AS, et al.
    Lipids, 1995 Dec;30(12):1145-50.
    PMID: 8614305
    The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oil were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2(+)-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyunsaturated fatty acids and vitamin E.
    Matched MeSH terms: Fatty Acids/analysis
  20. Yusuf AL, Adeyemi KD, Roselina K, Alimon AR, Goh YM, Samsudin AA, et al.
    Food Res Int, 2018 09;111:699-707.
    PMID: 30007735 DOI: 10.1016/j.foodres.2018.06.015
    The effects of dietary supplementation of different parts of Andrographis paniculata on fatty acids, lipid oxidation, microbiota and quality attributes of Longissimus thoracis et lumborum (LTL) muscle in goats were assessed. Twenty four, entire Boer bucks (4 months old; 20.18 ± 0.19 kg BW) were randomly allotted to either a basal diet without additive (AP0), a basal diet + 1.5% Andrographis paniculata leaves (APL) or a basal diet + 1.5% Andrographis paniculata whole plant (APW). The bucks were fed the diets for 100 d and slaughtered. The LTL muscle was subjected to a 7 d chill storage. The AP0 meat had higher (p  .05) on muscle glycogen, pH, drip loss, chemical composition and lactic acid bacteria count. Cooking loss, shear force, and TBARS values were lower (p 
    Matched MeSH terms: Fatty Acids/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links