METHODS: Consecutive NAFLD patients attending five clinics in Asia were included in this study. The 10-year cardiovascular disease risk was calculated based on the Framingham Heart Study, and patients were categorized as moderate, high, or very high risk for cardiovascular disease on the basis of the American Association of Clinical Endocrinologist 2017 Guidelines. The low-density lipoprotein cholesterol treatment goal for each of the risk groups was 2.6, 2.6, and 1.8 mmol/L, respectively.
RESULTS: The data for 428 patients were analyzed (mean age 54.4 ± 11.1 years, 52.1% male). Dyslipidemia was seen in 60.5% (259/428), but only 43.2% (185/428) were on a statin. The percentage of patients who were at moderate, high, and very high risk for cardiovascular disease was 36.7% (157/428), 27.3% (117/428), and 36.0% (154/428), respectively. Among patients who were on a statin, 58.9% (109/185) did not achieve the treatment target. Among patients who were not on a statin, 74.1% (180/243) should be receiving statin therapy. The percentage of patients who were not treated to target or who should be on statin was highest among patients at very high risk for cardiovascular disease at 79.6% (78/98) or 94.6% (53/56), respectively.
CONCLUSION: This study highlights the suboptimal treatment of dyslipidemia and calls for action to improve the treatment of dyslipidemia in NAFLD patients.
METHODS: The genotypes were assessed on 144 histologically confirmed NAFLD patients and 198 controls using a Sequenom MassARRAY platform.
RESULTS: The GCKR rs1260326 and rs780094 allele T were associated with susceptibility to NAFLD (OR 1.49, 95 % CI 1.09-2.05, p = 0.012; and OR 1.51, 95 % CI 1.09-2.09, p = 0.013, respectively), non-alcoholic steatohepatitis (NASH) (OR 1.55, 95 % CI 1.10-2.17, p = 0.013; and OR 1.56, 95 % CI 1.10-2.20, p = 0.012, respectively) and NASH with significant fibrosis (OR 1.50, 95 % CI 1.01-2.21, p = 0.044; and OR 1.52, 95 % CI 1.03-2.26, p = 0.038, respectively). Following stratification by ethnicity, significant association was seen in Indian patients between the two SNPs and susceptibility to NAFLD (OR 2.64, 95 % CI 1.28-5.43, p = 0.009; and OR 4.35, 95 % CI 1.93-9.81, p < 0.0001, respectively). The joint effect of GCKR with adiponutrin rs738409 indicated greatly increased the risk of NAFLD (OR 4.14, 95 % CI 1.41-12.18, p = 0.010). Histological data showed significant association of GCKR rs1260326 with high steatosis grade (OR 1.76, 95 % CI 1.08-2.85, p = 0.04).
CONCLUSION: This study suggests that risk allele T of the GCKR rs780094 and rs1260326 is associated with predisposition to NAFLD and NASH with significant fibrosis. The GCKR and PNPLA3 genes interact to result in increased susceptibility to NAFLD.
METHODS: A cohort study was conducted in 77,425 men and women free of NAFLD and metabolic abnormalities at baseline, who were followed-up annually or biennially for an average of 4.5 years. Being metabolically healthy was defined as not having any metabolic syndrome component and having a homeostasis model assessment of insulin resistance <2.5. The presence of fatty liver was determined using ultrasound.
RESULTS: During 348,193.5 person-years of follow-up, 10,340 participants developed NAFLD (incidence rate, 29.7 per 1,000 person-years). The multivariable adjusted hazard ratios (95% confidence intervals) for incident NAFLD comparing overweight and obese with normal-weight participants were 2.15 (2.06-2.26) and 3.55 (3.37-3.74), respectively. In detailed dose-response analyses, increasing baseline BMI showed a strong and approximately linear relationship with the incidence of NAFLD, with no threshold at no risk. This association was present in both men and women, although it was stronger in women (P for interaction <0.001), and it was evident in all clinically relevant subgroups evaluated, including participants with low inflammation status.
CONCLUSIONS: In a large cohort of strictly defined metabolically healthy men and women, overweight and obesity were strongly and progressively associated with an increased incidence of NAFLD, suggesting that the obese phenotype per se, regardless of metabolic abnormalities, can increase the risk of NAFLD.
METHODS: We used related keywords to search for studies in 3 electronic databases: PubMed, EMBASE, and Cochrane Library. All eligible studies published up to April 2020 were reviewed. The findings of those studies reporting the mortality outcomes of hospitalized CVD patients with and without NAFLD were examined, and the various study results were pooled and analyzed using a random-effects model. A quality assessment using the Newcastle-Ottawa scale was performed on the studies selected for inclusion in a meta-analysis.
RESULTS: A total of 2135 studies were found, of which 3 were included in this meta-analysis. All studies were considered good quality. The mean age of the patients in the analysis was 73 years, and about half of them were men. The comorbidities reported were hypertension, diabetes mellitus, and dyslipidemia. The results showed that hospitalized CVD patients with NAFLD were at a significantly higher risk of all-cause mortality than non-NAFLD patients (adjusted hazard ratio of 2.08 [95% confidence interval, 1.56-2.59], P
METHODS: This is a cross-sectional study of consecutive adult T2DM patients attending the Diabetes Clinic of a university hospital. Significant hepatic steatosis and advanced fibrosis was diagnosed based on transient elastography if the controlled attenuation parameter was ≥ 263 dB/m, and the liver stiffness measurement was ≥ 9.6 kPa using the M probe or ≥ 9.3 kPa using the XL probe, respectively. Patients with liver stiffness measurement ≥ 8 kPa were referred to the Gastroenterology and Hepatology Clinic for further assessment, including liver biopsy.
RESULTS: The data of 557 patients were analyzed (mean age 61.4 ± 10.8 years, male 40.6%). The prevalence of NAFLD and advanced fibrosis based on transient elastography was 72.4% and 21.0%, respectively. On multivariate analysis, independent factors associated with NAFLD were central obesity (OR 4.856, 95% confidence interval [CI] 2.749-8.577, P = 0.006), serum triglyceride (OR 1.585, 95% CI 1.056-2.381, P = 0.026), and alanine aminotransferase levels (OR 1.047, 95% CI 1.025-1.070, P liver biopsy. The majority had non-alcoholic steatohepatitis (83.1%) and ≥ F1 fibrosis (87.3%) while advanced fibrosis was seen in 36.6%.
CONCLUSION: The prevalence of NAFLD and advanced fibrosis based on transient elastography is high among T2DM patients.
MATERIALS AND METHODS: A literature search was performed to identify potential miRNAs involved in the pathogenesis of HCC. Unpaired serum and ascitic fluid were obtained from 52 patients with NASH related liver cirrhosis (n=26 for each group of with and without HCC). Exosomal miRNA was isolated from all samples. Expression levels of miR-182, miR-301a and miR- 373 were determined using quantitative real-time PCR.
RESULTS: Serum-derived exosomal mir-182, miR-301a and miR-373 were significantly up-regulated with fold change of 1.77, 2.52, and 1.67 (p< 0.05) respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC. We identified the expression levels of ascitic fluid-derived exosomal mir-182, miR-301a, and miR-373 were significantly up-regulated with fold change of 1.6, 1.94 and 2.13 respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC (p <0.05). There was poor correlation expression of all the selected exosomal miRNA between serum- and ascitic fluid-derived in HCC group.
CONCLUSIONS: This preliminary data showed significant increase in the expression levels of exosomal miR-182, miR-301a and miR- 373 in both serum and ascetic fluid suggesting the possible roles of these miRNAs as circulating biomarkers for NASH-induced liver cirrhosis with hepatocellular carcinoma.
METHODS: This was a cross-sectional study on medical students from the University of Malaya. Diagnosis of NAFLD was by transabdominal ultrasonography and following exclusion of significant alcohol intake and other causes of chronic liver disease.
RESULTS: Data of 469 subjects were analyzed (mean age 23.2 ± 2.4 years, 40.3 % male). The racial distribution was: Chinese 53.9 %, Malay 30.5 % and Indian 15.6 %. The overall prevalence of NAFLD was 7.9 %. Subjects with NAFLD were older, had greater BMI and WC, higher SBP and DBP, higher FBS, serum TG and LDL levels, and lower serum HDL level. The prevalence of NAFLD was higher among males compared to females (17.9 % vs. 3.3 %, p
METHODS: Consecutive subjects who came for a health checkup at a suburban medical facility were recruited for the study. All individuals had clinical assessments, anthropometric measurements, blood tests, and ultrasonography of the liver performed. Those with significant alcohol consumption and history of chronic liver disease were excluded.
RESULTS: Of the 1,621 "health screened" individuals analyzed, 368 (22.7 %) were found to have NAFLD. They comprised Chinese 1,269 (78.3 %), Malay 197 (12.1 %), and Indian 155 (9.6 %). Males and "older" age group ≥45 years had high prevalence rates with the highest in Indian (68.2 %) and Malay (64.7 %) males. Chinese females <45 years had the lowest prevalence of 5.2 %. A significant increase in the prevalence of fatty liver between age <45 years and ≥45 years was seen in female of all three races but in male, this increase was seen only among the Indians. NAFLD was strongly associated with diabetes mellitus, glucose intolerance, body mass index ≥23, low high-density lipoprotein cholesterol, hypertriglyceridemia, and hypertension.
CONCLUSION: NAFLD is common in suburban Malaysian population. Older Indian and Malay males have an inordinately high prevalence of the disease.
Methods: A total of 413 individuals (163 men and 250 women) aged 30-60 years were selected by stratified random sampling. The participants had safe alcohol consumption habits (<2 drinks/day) and no symptoms of hepatitis B and C. NAFLD was diagnosed through ultrasound. Blood pressure, anthropometric, and body composition measurements were made and liver function tests were conducted. Biochemical assessments, including the measurement of fasting blood sugar (FBS) and ferritin levels, as well as lipid profile tests were also performed. Metabolic syndrome was evaluated according to the International Diabetes Federation (IDF) criteria.
Results: The overall prevalence of ultrasound-diagnosed NAFLD was 39.3%. The results indicated a significantly higher prevalence of NAFLD in men than in women (42.3% vs 30.4%; P < 0.05). Binary logistic regression analysis was performed to determine the significant variables as NAFLD predictors. Overall, male gender, high body mass index (BMI), high alanine aminotransferase (ALT), high FBS, and high ferritin were identified as the predictors of NAFLD. The only significant predictors of NAFLD among men were high BMI and high FBS. These predictors were high BMI, high FBS, and high ferritin in women (P < 0.05 for all variables).
Conclusions: The metabolic profile can be used for predicting NAFLD among men and women. BMI, FBS, ALT, and ferritin are the efficient predictors of NAFLD and can be used for NAFLD screening before liver biopsy.
Study design: An observational cross-sectional study.
Methods: The participants were aged between 45 and 75 years who participated in a screening program at the Golden Horses Health Sanctuary in Klang Valley. Lipid profile and anthropometric measurements were collected from the subjects' medical records. Ultrasound machine and a structured self-administered questionnaire were used as instruments for recruiting data from the subjects. The subjects who consumed alcohol (>140 g/wk for men and >70 g/wk for females), had hepatitis B or C viruses, liver insults, and surgery, and taken lipid-lowering medications were excluded from the study.
Results: A total of 628 subjects were analyzed, and 235 (37.4%) subjects were diagnosed with definite NAFLD. They comprised 518 (82.5%) Chinese, 92 (14.6%) Malays, and 18 (2.9%) Indians. Peak prevalence of NAFLD was found in 53 to 60 years age group. The higher prevalence of NAFLD was among men (48.3%) than women (27.3%) and among Indians (61.1%) and Malays (51.1%) than among Chinese (34.2%). NAFLD has been found to be strongly correlated with male sex, high body mass index (≥23.0 kg/m2), hypertriglyceridemia, low high-density lipoprotein cholesterol, diabetes mellitus, and hypertension.
Conclusion: NAFLD is quite common among adults in Malaysian urban population. The prevalence of NAFLD was inordinately high among the 53 to 60 years age group, male sex, Indians, and Malays (as compared with Chinese). Age >60 years, male sex, high body mass index (≥23.0 kg/m2), hypertriglyceridemia, and diabetes mellitus were proven to be risk predictors for NAFLD.