Displaying publications 81 - 100 of 133 in total

Abstract:
Sort:
  1. Ahmad Taufek Abdul Rahman, Ahmad Termizi Ramli, Abd. Khalik Wood
    MyJurnal
    Environmental radiation protection program is important in the effort to limit radiation dose to the public to be as low as reasonably achievable. As water is an important factor of transfer of radionuclide to human, therefore it is important to measure natural radionuclide concentrations in rivers. 20 water samples were collected randomly from the main rivers in Kota Tinggi district. The water samples collected were analysed using ICP-MS technique to determine uranium, thorium and potassium concentration in river water. Radionuclide concentrations obtained were compared with the terrestrial gamma radiation dose rate measured in the area. Significance of the results obtained is discussed.
    Matched MeSH terms: Gamma Rays
  2. Azhar Mohamad
    MyJurnal
    The Gamma Green House (GGH) is a chronic irradiation facility located at MINT Tech Park, Nuclear Malaysia, Jalan Dengkil. GGH is used for induction of mutation in plants and other biological samples with low dose radiation over period of time depending on the nature and sensitivity of the plant species. Gamma Greenhouse facility at Malaysian Nuclear Agency comprises an open topped
    irradiation area consisting of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiation source is a REVISS RSL6050 double encapsulated 800 Ci 137Cs (half-life 30.1 years for 137Cs) pencils and allowed to be exposed only when the entire 300 m diameter site is free from personnel. The irradiator system is secured by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe
    storage position if any safety device is compromised.
    Matched MeSH terms: Gamma Rays
  3. Chiew, Miao Si, Lai, Kok Song, Sobri Hussein, Janna Ong Abdullah
    MyJurnal
    Stevia rebaudiana Bertoni in the Asteraceae family is commercially valuable and cultivated throughout the world due to the great demand for its steviol glycosides (SGs) contents particularly rebaudioside A. Previous studies confirmed that maximal content of SGs in stevia was achieved at or just before flowering, and delayed flowering with long days provide longer duration for steviol glycosides accumulation. However, there is no suitable stevia variety to be cultivated in Malaysia due to her short day length. Mutation induction, including gamma irradiation, had been shown to be useful for generating genetic variations as well as developing new plant varieties from which desired mutants were successfully selected. The use of mutagens, both physical and chemical, has helped in creating mutants that expressed the selected desirable traits. This paper presents some selected essential data available in extant scientific studies on stevia with the focus on application of gamma irradiation on stevia. Both established achievements and recent publications of gamma radiation on stevia were reviewed. Emphasis is on the exceptional potential of stevia through induced mutation approach especially by using gamma rays.
    Matched MeSH terms: Gamma Rays
  4. Nor Yusliza Kamaruddin, Shamsiah Abdullah
    MyJurnal
    This study looked at mutagenic effectiveness of gamma rays d on two varieties of Zingiber officinale Roscoe: Bentong and Tanjung Sepat. The rhizomes were exposed to different doses (0, 5, 7, 9, 11, 13 and 15 Gy) using Caesium-137 as source of the gamma rays. The effect of different gamma doses on the crude fibre composition of irradiated ginger was studied and genetic variability was assessed using molecular marker technique, RAPD. Findings showed different doses of gamma rays could induce variability in these two ginger varieties and the effect was found to be variety-dependent. Bentong variety irradiated with 9 Gy recorded 8.53% of crude fibre composition while Tanjung Sepat irradiated ginger with 5 Gy recorded 8.70% of crude fibre which gave the lowest composition compared with other irradiated ginger. A total of nine different arbitrary decamers were used as primers to amplify DNA from mutant plant material to assess their polymorphism level of ginger mutant lines. Polymorphism of all mutant lines was 97.62% indicating that there were significant changes in genetic sequences in irradiated ginger genotypes.
    Matched MeSH terms: Gamma Rays
  5. Faiz Ahmad, Zaiton Ahmad, Affrida Abu Hassan, Sakinah Ariffin, Norazlina Noordin, Shakinah Salleh, et al.
    MyJurnal
    The research on radiation induced mutation has been conducted as one of the promising method of plant breeding in Malaysia since 1980s. Nuclear Malaysia is leading research institute inMalaysia conducting plant mutationbreeding research. Gamma Greenhousefacility located in Nuclear Malaysiais one of the irradiation facilitiesto serve as a chronic irradiation facility for inducing mutation in various organisms including plants, fungi and microbes.Chronic irradiation refers to the exposure of materials at a lower dose rate over a long period of time. Previous studies have shown that this type of irradiation can minimize radiation damages to living materials and produces a wider mutation spectrum, therefore is very useful for trait improvements in irradiated organisms. Experiments on induce mutation using Gamma Greenhouse facility for crop improvement program have been conducted since its first operation in 2009. Various plant species including ornamental and herbal plants, food crops and industrial crops have been irradiated to improve their traits such as higher yield and biomass, pest and disease tolerance, higher bioactive compounds, longer bloom time and many others. Most of these crop improvement programs were done through collaborations with other agencies in Malaysia such as universities, research institutes and government departments. A number of publications on crop improvement using Gamma Greenhouse have been published inlocal and international journals as well as seminar presentations at national and international levels. The outputs from induced mutation via chronic radiation using Gamma Greenhouse could be of great interest for plant breeders dealing with improvement and development of new cultivars. This paper discusses the activities and achievement in plant breeding and improvement using Gamma Greenhouse Facility in Malaysia.
    Matched MeSH terms: Gamma Rays
  6. Bradley DA, Ng KH, Aziz YB
    Int J Rad Appl Instrum A, 1988;39(5):439-40.
    PMID: 2840420
    The utility of a phantom material, based on SMR(L) [Standard Malaysian Rubber] grade natural rubber and a formulation used for the proprietary rubber phantom-material, Temex, has been examined for the 1-MeV photon-Measurement has also been performed with 60-keV photons using the radionuclide 241Am. At photon-therapy energy levels the measured response, when compared with tabulated central-axis percentage depth doses for the defined measuring conditions, produces everywhere (in the range 1-19 cm depth) better than 2% deviation. The favourable measured response characteristics combined with the ease of processing and casting the phantom material provide the basis for useful radiotherapy machine calibration and anthropomorphic dosimetry measurements. The measured mass-attenuation coefficient, at 60keV, of 0.204 cm2 g-1 (+/- 3%) is in close agreement with tabulated values for water (0.2055 cm2 g-1).
    Matched MeSH terms: Gamma Rays
  7. Siew PF, Wan Yusmawati Wan Yusoff, Azman Jalar
    Sains Malaysiana, 2014;43:827-832.
    The physical properties and structural stability of the Quad Flat No-Leads (QFN) package with different gamma radiation doses have been investigated. The packages were irradiated with Co-60 gamma radiation with varying doses of 5 Gy, 50 Gy, 500 Gy, 5 kGy and 50 kGy with operating dose of 2.54 kGylh at room temperature. The infinite focus microscope (IFM) was used to measure the dimensional change and slantinglwarpage behaviour, while the 3D CT Scan X-ray machine was used to determine the occurrence of deflection on a wire in package due to exposure. It is believed that radiation effect on ceramic filler in the epoxy mold compound (EMC) plays an important role to induce the defects and resulted in swelling of the package. The slantinglwarpage behaviour is believed to be caused by the swelling behaviour of ceramic filler and further induced structural stability. The induced stress on the EMC structural after the dimensional change and slantinglwarpage failure leads to the occurrence of wire sweep. The finding suggests that defect production in swelled ceramic filler leads to the occurrence of dimensional and structure instability.
    Matched MeSH terms: Gamma Rays
  8. Bradley DA, Nawi SNM, Khandaker MU, Almugren KS, Sani SFA
    Appl Radiat Isot, 2020 Jul;161:109168.
    PMID: 32321700 DOI: 10.1016/j.apradiso.2020.109168
    Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30-200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113-1.133 eV.
    Matched MeSH terms: Gamma Rays
  9. Yaakob Z, Bshish A, Ebshish A, Tasirin SM, Alhasan FH
    Materials (Basel), 2013 May 30;6(6):2229-2239.
    PMID: 28809270 DOI: 10.3390/ma6062229
    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.
    Matched MeSH terms: Gamma Rays
  10. Saidu A, Wagiran H, Saeed MA, Alajerami YSM, Kadir ABA
    Appl Radiat Isot, 2016 Dec;118:375-381.
    PMID: 27894049 DOI: 10.1016/j.apradiso.2016.10.005
    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5-1000Gy is investigated. The results show that the thermal fading behaviour is improved significantly.
    Matched MeSH terms: Gamma Rays
  11. Mansor A, Ariffin AF, Yusof N, Mohd S, Ramalingam S, Md Saad AP, et al.
    Cell Tissue Bank, 2023 Mar;24(1):25-35.
    PMID: 35610332 DOI: 10.1007/s10561-022-10013-9
    Bone processing and radiation were reported to influence mechanical properties of cortical bones due in part to structural changes and denaturation of collagen composition. This comparative study was to determine effects of bone processing on mechanical properties and organic composition, and to what extent the radiation damaging after each processing. Human femur cortical bones were processed by freezing, freeze-drying and demineralisation and then gamma irradiated at 5, 15, 20, 25 and 50 kGy. In the compression test, freeze drying significantly decreased the Young's Modulus by 15%, while demineralisation reduced further by 90% (P 
    Matched MeSH terms: Gamma Rays
  12. Garba NN, Abdulkadir M, Nasiru R, Saleh MA, Bello S, Khandaker MU, et al.
    Isotopes Environ Health Stud, 2023 Mar;59(1):112-125.
    PMID: 36735938 DOI: 10.1080/10256016.2023.2172001
    Terrestrial gamma radiation dose (TGRD) rates were measured in situ from different locations in Katsina State, Nigeria, using a portable radiation survey metre based on geological formations and soil types. The measured TGRD rates ranged from 45 to 271 nGyh-1 with an average value of 116 ± 1 nGyh-1. Geological formation (silicified sheared rock) and soil type (lithosols and ferruginous crusts and ferruginous tropical soils) appeared to have the highest mean TGRD values of 163 and 134 nGyh-1 with sandstone geological formation and alluvial and hydromorphic soils having the lowest TGRD with values of 80 and 61 nGyh-1, respectively. One way ANOVA results shows that the tested null hypothesis was rejected. Thus, indicating that there exists a strong relationship between the various geological formations, soil types with the measured TGRD values based on the alternate hypothesis. Human health hazard indices like annual effective dose equivalent (AEDE), lifetime outdoor annual equivalent dose, and relative excess lifetime outdoor cancer risk associated with the mean TGRD of the study area were also calculated and found to be 0.711, 9.955 mSv, and 5.79 × 10-4, respectively. These values were higher than the world average values but favourable compared with the safety limits recommended by ICRP.
    Matched MeSH terms: Gamma Rays
  13. Moradi F, Khandaker MU, Alrefae T, Ramazanian H, Bradley DA
    Appl Radiat Isot, 2019 Apr;146:120-126.
    PMID: 30769172 DOI: 10.1016/j.apradiso.2019.01.031
    Studies of radiation interactions with tissue equivalent material find importance in efforts that seek to avoid unjustifiable dose to patients, also in ensuring quality control of for instance nuclear medicine imaging equipment. Use of the Monte Carlo (MC) simulation tool in such characterization processes allows for the avoidance of costly experiments involving transmitted X- and γ-ray spectrometry. Present work investigates MC simulations of γ-ray transmission through tissue equivalent solid phantoms. Use has been made of a range of radionuclide gamma ray sources, 99mTc, 131I, 137Cs, 60Co (offering photons in the energy range from a few keV up to low MeV), popularly applied in medicine and in some cases for gauging in industry, obtaining the transmission spectra following their interaction with various phantom materials and thicknesses. In validation of the model, the simulated values of mass attenuation coefficients (μ/ρ) for different phantom materials and thicknesses were found to be in good agreement with reference values (NIST, 2004) to within 1.1% for all material compositions. For all of the primary photon energies and medium thicknesses of interest herein, results show that multiple scattering peaks are generally located at energies lower than 100 keV, although for the larger phantom thicknesses it is more difficult to distinguish single, double and multiple scattering in the gamma spectra. Transmitted photon spectra investigated for water, soft tissue, breast, brain and lung tissue slab phantoms are demonstrated to be practically independent of the phantom material, while a significant difference is observed for the spectra transmitted through bone that was proved to be due to the density effect and not material composition.
    Matched MeSH terms: Gamma Rays/adverse effects*; Gamma Rays/therapeutic use*
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Nov 30;121(22):221802.
    PMID: 30547617 DOI: 10.1103/PhysRevLett.121.221802
    The first evidence of events consistent with the production of a single top quark in association with a photon is reported. The analysis is based on proton-proton collisions at sqrt[s]=13  TeV and recorded by the CMS experiment in 2016, corresponding to an integrated luminosity of 35.9  fb^{-1}. Events are selected by requiring the presence of a muon (μ), a photon (γ), an imbalance in transverse momentum from an undetected neutrino (ν), and at least two jets (j) of which exactly one is identified as associated with the hadronization of a b quark. A multivariate discriminant based on topological and kinematic event properties is employed to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations. A fiducial cross section is measured for isolated photons with transverse momentum greater than 25 GeV in the central region of the detector. The measured product of the cross section and branching fraction is σ(pp→tγj)B(t→μνb)=115±17(stat)±30(syst)  fb, which is consistent with the standard model prediction.
    Matched MeSH terms: Gamma Rays
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Apr 19;122(15):152001.
    PMID: 31050516 DOI: 10.1103/PhysRevLett.122.152001
    The modification of jet shapes in Pb-Pb collisions, relative to those in pp collisions, is studied for jets associated with an isolated photon. The data were collected with the CMS detector at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Jet shapes are constructed from charged particles with track transverse momenta (p_{T}) above 1  GeV/c in annuli around the axes of jets with p_{T}^{jet}>30  GeV/c associated with an isolated photon with p_{T}^{γ}>60  GeV/c. The jet shape distributions are consistent between peripheral Pb-Pb and pp collisions, but are modified for more central Pb-Pb collisions. In these central Pb-Pb events, a larger fraction of the jet momentum is observed at larger distances from the jet axis compared to pp, reflecting the interaction between the partonic medium created in heavy ion collisions and the traversing partons.
    Matched MeSH terms: Gamma Rays
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Mar 01;122(8):081804.
    PMID: 30932612 DOI: 10.1103/PhysRevLett.122.081804
    A search for heavy, narrow resonances decaying to a Higgs boson and a photon (Hγ) has been performed in proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1} collected with the CMS detector at the LHC in 2016. Events containing a photon and a Lorentz-boosted hadronically decaying Higgs boson reconstructed as a single, large-radius jet are considered, and the γ+jet invariant mass spectrum is analyzed for the presence of narrow resonances. To increase the sensitivity of the search, events are categorized depending on whether or not the large-radius jet can be identified as a result of the merging of two jets originating from b quarks. Results in both categories are found to agree with the predictions of the standard model. Upper limits on the production rate of Hγ resonances are set as a function of their mass in the range of 720-3250 GeV, representing the most stringent constraints to date.
    Matched MeSH terms: Gamma Rays
  17. Jamal AbuAlRoos N, Azman MN, Baharul Amin NA, Zainon R
    Phys Med, 2020 Oct;78:48-57.
    PMID: 32942196 DOI: 10.1016/j.ejmp.2020.08.017
    PURPOSE: The main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.

    MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.

    RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.

    CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.

    Matched MeSH terms: Gamma Rays
  18. Mei-Wo, Yii, Kamarozaman Ishak, Nooruzainah Abu Hassan, Maziah Mahmud, Khairul Nizam Razali
    Jurnal Sains Nuklear Malaysia, 2012;24(1):102-112.
    MyJurnal
    IAEA Soil-6 is a reference material with a certified value for 226Ra fall between 69.6 – 93.4 Bq/kg at 95% confidence level. This material has been used as a sample and performed repeat measurement weekly between years 2006 – 2009 using a same gamma spectrometry system. The activity concentration of this material is calculated automatically using the operational commercial software and compared with activity obtained from the manual calculation. Study found that only 76.9%, 64.1%, 56.3%, and 79.3% of the results from the software calculation lie within the confidence level for year 2006, 2007, 2008 and 2009, respectively. However, u-score calculation revealed that 94.9 %, 89.7%, 79.2% and 84.9% data set have no significant bias (u < 2.58) for year 2006, 2007, 2008 and 2009, respectively. On the other hand, all manual calculation data were found to be within the 95 % confidence level. Factors suspected to cause differences between these two approaches were discussed here. Manually peak search, marking and calculation still remains as the preferred option for calculating the gamma radionuclides activity unless limitations of the spectrum analysis software, as described in this paper can be resolved/improved upon.
    Matched MeSH terms: Gamma Rays
  19. Rasif Mohd Zain, Roslan Yahya, Mohamad Rabaie Shari, Airwan Affandi Mahmood, Mior Ahmad Khusaini Adnan
    MyJurnal
    Many times a year natural gas transmission and distribution companies need to make new connections to pipelines to expand or modify their existing system through hot tapping procedure. This procedure involves the installation of a new pipeline connection while the pipeline remains in service, flowing natural gas under pressure. The hot tap procedure includes attaching a branch connection and valve on the outside of an operating pipeline, and then cutting out the pipe-line wall within the branch and removing the wall section, which is called object of coupon through the valve. During the hot tapping process a critical problems occurred when a coupon fell into the mother pipeline. To overcome this problem, a gamma-ray absorption technique was chosen whereby a mapping technique will be done to detect the coupon position. The technique is non-destructive as it applies Co-60 (5mCi) as a radioisotope sealed source to emit gamma radiation and a NaI(Tl) scintillation as detector. The result provided a visible representation of density profile inside pipeline where the coupon location can be located. This paper provides the detail of the technique used and presents the result obtained.
    Matched MeSH terms: Gamma Rays
  20. Wagiran, Husin, Supramaniam, Thiagu, Azali Mohamad, Abdul Aziz Mohamed, Faridah M. Idris
    MyJurnal
    Neutron aperture is one of the collimator components in a neutron radiography facility. The optimum design of neutron aperture is very importance in order to obtain largest L/D ratio with highest thermal neutron flux and low gamma-rays at the image plane. In this study, the optimization of neutron aperture parameters were done using Monte Carlo N-Particle Transport Code, version five (MCNP5). This code has a capability to simulate the neutron, photon, and electron or coupled of neutron/photon/electron transport, including the capability to calculate eigen values for critical system. The aperture parameters concerned in this study are the selection of best aperture material, aperture thickness, aperture position and aperture center hole diameter. In these simulations, vacuum beam port medium was applied.
    Matched MeSH terms: Gamma Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links