Displaying publications 81 - 100 of 322 in total

Abstract:
Sort:
  1. Saswati, Adão P, Majumder S, Dash SP, Roy S, Kuznetsov ML, et al.
    Dalton Trans, 2018 Aug 21;47(33):11358-11374.
    PMID: 30059099 DOI: 10.1039/c8dt01668b
    The synthesis and characterization of an oxidovanadium(iv) [VIVO(L)(acac)] (1) and of two dioxidovanadium(v) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) are described. The oxidovanadium(iv) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(v) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L'-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding VVO2-species through in situ reaction. The synthesized HL and the metal complexes were characterized by elemental analysis, IR, UV-Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X-ray crystallography. The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, higher than VIVO(acac)2, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF-7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that an increase in the time of incubation and an increase of concentration of the complexes lead to the increase in cell death.
    Matched MeSH terms: MCF-7 Cells
  2. Topkaya D, Ng SY, Bretonnière Y, Lafont D, Chung LY, Lee HB, et al.
    Photodiagnosis Photodyn Ther, 2016 Dec;16:12-14.
    PMID: 27475243 DOI: 10.1016/j.pdpdt.2016.07.008
    Matched MeSH terms: MCF-7 Cells
  3. Tang SW, Sukari MA, Neoh BK, Yeap YS, Abdul AB, Kifli N, et al.
    Biomed Res Int, 2014;2014:417674.
    PMID: 25057485 DOI: 10.1155/2014/417674
    Phytochemical investigation on rhizomes of Kaempferia angustifolia has afforded a new abietene diterpene, kaempfolienol (1) along with crotepoxide (2), boesenboxide (3), 2'-hydroxy-4,4',6'-trimethoxychalcone (4), zeylenol (5), 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), sucrose, β-sitosterol, and its glycoside (8). The structures of the compounds were elucidated on the basis of spectroscopic methods (IR, MS, and NMR). Isolation of 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), and β-sitosterol-3-O-β-D-glucopyranoside (8) from this plant species has never been reported previously. The spectroscopic data of (7) is firstly described in this paper. Cytotoxic screening indicated that most of the pure compounds tested showed significant activity with (4) showing the most potent activity against HL-60 (human promyelocytic leukemia) and MCF-7 (human breast cancer) cell lines. However, all extracts and most of the pure compounds tested were found to be inactive against HT-29 (human colon cancer) and HeLa (human cervical cancer) cell lines. Similarly, none of the extracts or compounds showed activity in the antimicrobial testing.
    Matched MeSH terms: MCF-7 Cells
  4. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar MF, et al.
    PMID: 25887035 DOI: 10.1186/s12906-015-0594-7
    Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang.
    Matched MeSH terms: MCF-7 Cells
  5. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
    Matched MeSH terms: MCF-7 Cells
  6. Kosiha A, Lo KM, Parthiban C, Elango KP
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:778-787.
    PMID: 30423764 DOI: 10.1016/j.msec.2018.10.021
    Three metal(II) complexes [CoLCl2], [CuLCl2] and [ZnL2Cl2] {L = 2‑chloro‑3‑((3‑dimethylamino)propylamino)naphthalene‑1,4‑dione} have been synthesized and characterized using analytical, thermal and spectral techniques (FT-IR, UV-Vis, ESR and ESI-MS). The structure of the L has been confirmed by single crystal XRD study. The complexes show good binding propensity to bovine serum albumin (BSA) having relatively higher binding constant values (104 M-1) than the ligand. Fluorescence spectral studies indicate that [CoLCl2] binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (2.22 × 105 M-1). Agarose gel electrophoresis run on plasmid DNA (pUC18) prove that all the complexes showed efficient DNA cleavage via hydroxyl radical mechanism. The complexes were identified as potent anticancer agents against two human cancer cell lines (MCF7 and A549) by comparing with cisplatin. Co(II) complex demonstrated greater cytotoxicity against MCF7 and A549 cells with IC50 values at 19 and 22 μM, respectively.
    Matched MeSH terms: MCF-7 Cells
  7. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: MCF-7 Cells
  8. Etti IC, Rasedee A, Hashim NM, Abdul AB, Kadir A, Yeap SK, et al.
    Drug Des Devel Ther, 2017;11:865-879.
    PMID: 28356713 DOI: 10.2147/DDDT.S124324
    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.
    Matched MeSH terms: MCF-7 Cells
  9. Ranneh Y, Abu Bakar MF, Md Akim A, Bin Baharum Z, S Ellulu M, Fadel A
    Asian Pac J Cancer Prev, 2023 Jul 01;24(7):2473-2483.
    PMID: 37505782 DOI: 10.31557/APJCP.2023.24.7.2473
    BACKGROUND: The objective of this study was to investigate the potential anti-proliferative activities of a methanolic extract of cocoa leaves (CL) obtained through sequential partition and fractionation against MCF-7 breast cancer cells.  Methods: The methanolic extract of CL was partitioned in three separated solvents (hexane, dichloromethane, and methanol). Hexane partition was the most potent against MCF-7 cells growth with the lowest IC50 value. Then, it was subjected to two fractionation procedures, resulting in the identification of the CL bioactive fraction (II-F7) with potent toxicity against MCF-7 cells.

    RESULTS: Further investigation into CL bioactive fraction (II-F7) revealed significant dose-dependent growth inhibitory effects on MCF-7 cells, which were attributed to the induction of apoptosis, as evidenced by the presence of apoptotic bodies, fragmented DNA, and disruption of mitochondrial membrane potential. Additionally, treatment with CL bioactive fraction (II-F7) upregulated the expression of pro-apoptotic genes (DDIT3, GADD45G and HRK) and significantly increased the activities of caspase-8 and caspase-9.

    CONCLUSION: Overall, this study suggests that bioactive fraction (II-F7) from CL extract has significant and selective cytotoxicity against MCF-7 cells through inducing apoptosis and has potential as a therapeutic agent for breast cancer treatment.

    Matched MeSH terms: MCF-7 Cells
  10. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    BMC Complement Altern Med, 2019 Aug 19;19(1):220.
    PMID: 31426778 DOI: 10.1186/s12906-019-2628-z
    BACKGROUND: Baeckea frutescens (B. frutescens) of the family Myrtaceae is a plant that has been used in traditional medicine. It is known to have antibacterial, antipyretic and cytoprotective properties. The objective of this study is to explore the mechanism of B. frutescens leaves extracts in eliminating breast cancer cells.

    METHOD: B. frutescens leaves extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxicity of these extracts at various concentrations (20 to 160 μg/ml) were tested using cell viability assay after 24, 48 and 72 h of treatment. The IC50 value in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscope. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening was performed for alkaloids, flavonoids, tannins, triterpenoids, and phenols.

    RESULTS: B. frutescens leaves extracts showed IC50 value ranging from 10 -127μg/ml in MCF-7 cells after 72 h of treatment. Hexane extract had the lowest IC50 value (10μg/ml), indicating its potent selective cytotoxic activity. Morphology of MCF-7 cells after treatment with B. frutescens extracts exhibited evidence of apoptosis that included membrane blebbing and chromatin condensation. In the glucose uptake assay, B. frutescens extracts suppressed glucose uptake in cancer cells as early as 24 h upon treatment. The inhibition was significantly lower compared to the positive control WZB117 at their respective IC50 value after 72 h incubation. It was also shown that the glucose inhibition is selective towards cancer cells compared to normal cells. The phytochemical analysis of the extract using hexane as the solvent in particular gave similar quantities of tannin, triterpenoids, flavonoid and phenols. Presumably, these metabolites have a synergistic effect in the in vitro testing, producing the potent IC50 value and subsequently cell death.

    CONCLUSION: This study reports the potent selective cytotoxic effect of B. frutescens leaves hexane extract against MCF-7 cancer cells. B. frutescens extracts selectively suppressed cancer cells glucose uptake and subsequently induced cancer cell death. These findings suggest a new role of B. frutescens in cancer cell metabolism.

    Matched MeSH terms: MCF-7 Cells
  11. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S
    Nanomaterials (Basel), 2018 Feb 02;8(2).
    PMID: 29393902 DOI: 10.3390/nano8020083
    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
    Matched MeSH terms: MCF-7 Cells
  12. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    PMID: 31178918 DOI: 10.1155/2019/9607590
    Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.
    Matched MeSH terms: MCF-7 Cells
  13. Mohamed Sa'dom SAF, Raikundalia S, Shamsuddin S, See Too WC, Few LL
    Genes (Basel), 2021 06 01;12(6).
    PMID: 34205960 DOI: 10.3390/genes12060853
    Choline kinase (CK) is the enzyme catalyzing the first reaction in CDP-choline pathway for the biosynthesis of phosphatidylcholine. Higher expression of the α isozyme of CK has been implicated in carcinogenesis, and inhibition or downregulation of CKα (CHKA) is a promising anticancer approach. This study aimed to investigate the regulation of CKα expression by DNA methylation of the CpG islands found on the promoter of this gene in MCF-7 cells. Four CpG islands have been predicted in the 2000 bp promoter region of ckα (chka) gene. Six CpG island deletion mutants were constructed using PCR site-directed mutagenesis method and cloned into pGL4.10 vectors for promoter activity assays. Deletion of CpG4C region located between -225 and -56 significantly increased the promoter activity by 4-fold, indicating the presence of important repressive transcription factor binding site. The promoter activity of methylated full-length promoter was significantly lower than the methylated CpG4C deletion mutant by 16-fold. The results show that DNA methylation of CpG4C promotes the binding of the transcription factor that suppresses the promoter activity. Electrophoretic mobility shift assay analysis showed that cytosine methylation at MZF1 binding site in CpG4C increased the binding of putative MZF1 in nuclear extract. In conclusion, the results suggest that DNA methylation decreased the promoter activity by promoting the binding of putative MZF1 transcription factor at CpG4C region of the ckα gene promoter.
    Matched MeSH terms: MCF-7 Cells
  14. Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, et al.
    PLoS One, 2019;14(7):e0219285.
    PMID: 31291309 DOI: 10.1371/journal.pone.0219285
    Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
    Matched MeSH terms: MCF-7 Cells
  15. Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, et al.
    Am J Hum Genet, 2015 Jan 08;96(1):5-20.
    PMID: 25529635 DOI: 10.1016/j.ajhg.2014.11.009
    Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Matched MeSH terms: MCF-7 Cells
  16. Kong BH, Teoh KH, Tan NH, Tan CS, Ng ST, Fung SY
    PeerJ, 2020;8:e9650.
    PMID: 32832273 DOI: 10.7717/peerj.9650
    Background: Lignosus tigris, a recently discovered species of the unique Lignosus family, has been traditionally used by the indigenous communities in Peninsular Malaysia to treat various ailments and as an alternative medicine for cancer treatment. The L. tigris cultivar sclerotia (Ligno TG-K) was found to contain numerous bioactive compounds with beneficial biomedicinal properties and the sclerotial extract exhibited potent antioxidant activity. However, the anticancer property of the Ligno TG-K including in vitro and in vivo antitumor effects as well as its anticancer active compounds and the mechanisms has yet to be investigated.

    Methods: The cytotoxicity of the Ligno TG-K against human breast (MCF7), prostate (PC3) and lung (A549) adenocarcinoma cell lines was evaluated using MTT cytotoxicity assay. The cytotoxic mechanisms of the active high molecular weight proteins (HMWp) fraction were investigated through detection of caspases activity and apoptotic-related proteins expression by Western blotting. The in vivo antitumor activity of the isolated HMWp was examined using MCF7 mouse xenograft model. Shotgun LC-MS/MS analysis was performed to identify the proteins in the HMWp.

    Results and Discussion: Cold water extract of the sclerotia inhibited proliferation of MCF7, A549 and PC3 cells with IC50 ranged from 28.9 to 95.0 µg/mL. Bioassay guided fractionation of the extract revealed that HMWp exhibited selective cytotoxicity against MCF7 cells via induction of cellular apoptosis by the activation of extrinsic and intrinsic signaling pathways. HMWp activated expression of caspase-8 and -9 enzymes, and pro-apoptotic Bax protein whilst inhibiting expression of tumor survivor protein, Bcl-2. HMWp induced tumor-cell apoptosis and suppressed growth of tumor in MCF-7 xenograft mice. Lectins, serine proteases, RNase Gf29 and a 230NA deoxyribonuclease are the major cytotoxic proteins that accounted for 55.93% of the HMWp.

    Conclusion: The findings from this study provided scientific evidences to support the traditional use of the L. tigris sclerotia for treatment of breast cancer. Several cytotoxic proteins with high abundance have been identified in the HMWp of the sclerotial extract and these proteins have potential to be developed into new anticancer agents or as adjunct cancer therapy.

    Matched MeSH terms: MCF-7 Cells
  17. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

    Matched MeSH terms: MCF-7 Cells
  18. Cheong PCH, Yong YS, Fatima A, Ng ST, Tan CS, Kong BH, et al.
    IUBMB Life, 2019 10;71(10):1579-1594.
    PMID: 31190445 DOI: 10.1002/iub.2101
    A lectin gene from the Tiger Milk Mushroom Lignosus rhinocerus TM02® was successfully cloned and expressed via vector pET28a in Escherichia coli BL21(DE3). The recombinant lectin, Rhinocelectin, with a predicted molecular mass of 22.8 kDa, was overexpressed in water-soluble form without signal peptide and purified via native affinity chromatography Ni-NTA agarose. Blast protein analysis indicated the lectin to be homologous to jacalin-related plant lectin. In its native form, Rhinocelectin exists as a homo-tetramer predicted with four chains of identical proteins consisting of 11 beta-sheet structures with only one alpha-helix structure. The antiproliferative activity of the Rhinocelectin against human cancer cell lines was concentration dependent and selective. The IC50 values against triple negative breast cancer cell lines MDA-MB-231 and breast cancer MCF-7 are 36.52 ± 13.55 μg mL-1 and 53.11 ± 22.30 μg mL-1 , respectively. Rhinocelectin is only mildly cytotoxic against the corresponding human nontumorigenic breast cell line 184B5 with IC50 value at 142.19 ± 36.34 μg mL-1 . The IC50 against human lung cancer cell line A549 cells is 46.14 ± 7.42 μg mL-1 while against nontumorigenic lung cell line NL20 is 41.33 ± 7.43 μg mL-1 . The standard anticancer drug, Doxorubicin exhibited IC50 values mostly below 1 μg mL-1 for the cell lines tested. Flow cytometry analysis showed the treated breast cancer cells were arrested at G0/G1 phase and apoptosis induced. Rhinocelectin agglutinated rat and rabbit erythrocytes at a minimal concentration of 3.125 μg mL-1 and 6.250 μg mL-1 , respectively.
    Matched MeSH terms: MCF-7 Cells
  19. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
    Matched MeSH terms: MCF-7 Cells
  20. Aboul-Soud MAM, Ashour AE, Challis JK, Ahmed AF, Kumar A, Nassrallah A, et al.
    Plants (Basel), 2020 Sep 30;9(10).
    PMID: 33008079 DOI: 10.3390/plants9101295
    Organic fractions and extracts of willow (Salix safsaf) leaves, produced by sequential solvent extraction as well as infusion and decoction, exhibited anticancer potencies in four cancerous cell lines, including breast (MCF-7), colorectal (HCT-116), cervical (HeLa) and liver (HepG2). Results of the MTT assay revealed that chloroform (CHCl3) and ethyl acetate (EtOAc)-soluble fractions exhibited specific anticancer activities as marginal toxicities were observed against two non-cancerous control cell lines (BJ-1 and MCF-12). Ultra-high-resolution mass spectrometry Q-Exactive™ HF Hybrid Quadrupole-Orbitrap™ coupled with liquid chromatography (UHPLC) indicated that both extracts are enriched in features belonging to major phenolic and purine derivatives. Fluorescence-activated cell sorter analysis (FACS), employing annexin V-FITC/PI double staining indicated that the observed cytotoxic potency was mediated via apoptosis. FACS analysis, monitoring the increase in fluorescence signal, associated with oxidation of DCFH to DCF, indicated that the mechanism of apoptosis is independent of reactive oxygen species (ROS). Results of immunoblotting and RT-qPCR assays showed that treatment with organic fractions under investigation resulted in significant up-regulation of pro-apoptotic protein and mRNA markers for Caspase-3, p53 and Bax, whereas it resulted in a significant reduction in amounts of both protein and mRNA of the anti-apoptotic marker Bcl-2. FACS analysis also indicated that pre-treatment and co-treatment of human amniotic epithelial (WISH) cells exposed to the ROS H2O2 with EtOAc fraction provide a cytoprotective and antioxidant capacity against generated oxidative stress. In conclusion, our findings highlight the importance of natural phenolic and flavonoid compounds with unparalleled and unique antioxidant and anticancer properties.
    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links