Displaying publications 81 - 100 of 176 in total

Abstract:
Sort:
  1. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: Malaria/parasitology*
  2. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Amran AA, Mahmud R
    J Ethnopharmacol, 2011 Apr 12;134(3):988-91.
    PMID: 21277969 DOI: 10.1016/j.jep.2011.01.026
    White flesh extract of Cocos nucifera (coconut) was studied to ascertain the ethnopharmacological standing of its antimalarial usage in Malaysian folk medicine.
    Matched MeSH terms: Malaria/parasitology
  3. Lim YA, Mahmud R, Chew CH, T T, Chua KH
    Malar J, 2010;9:272.
    PMID: 20929588 DOI: 10.1186/1475-2875-9-272
    BACKGROUND:
    Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax.

    METHODS:
    Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing.

    RESULTS AND DISCUSSION:
    Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector.

    CONCLUSIONS:
    The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis.
    Matched MeSH terms: Malaria/parasitology*
  4. Sabbatani S, Fiorino S, Manfredi R
    Braz J Infect Dis, 2010 May-Jun;14(3):299-309.
    PMID: 20835518
    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological network. In parallel with epidemiological and health care policy studies, also an accurate appraisal of the clinical features of P. knowlesi-affected patients will be strongly needed, since some preliminary experiences seem to show an increased disease severity, associated with increased parasitemia, in parallel with the progressive increase of inter-human infectious passages of this emerging Plasmodium.
    Matched MeSH terms: Malaria/parasitology*
  5. Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, Ratnam S, et al.
    Clin Infect Dis, 2008 Jan 15;46(2):165-71.
    PMID: 18171245 DOI: 10.1086/524888
    BACKGROUND: Until recently, Plasmodium knowlesi malaria in humans was misdiagnosed as Plasmodium malariae malaria. The objectives of the present study were to determine the geographic distribution of P. knowlesi malaria in the human population in Malaysia and to investigate 4 suspected fatal cases.

    METHODS: Sensitive and specific nested polymerase chain reaction was used to identify all Plasmodium species present in (1) blood samples obtained from 960 patients with malaria who were hospitalized in Sarawak, Malaysian Borneo, during 2001-2006; (2) 54 P. malariae archival blood films from 15 districts in Sabah, Malaysian Borneo (during 2003-2005), and 4 districts in Pahang, Peninsular Malaysia (during 2004-2005); and (3) 4 patients whose suspected cause of death was P. knowlesi malaria. For the 4 latter cases, available clinical and laboratory data were reviewed.

    RESULTS: P. knowlesi DNA was detected in 266 (27.7%) of 960 of the samples from Sarawak hospitals, 41 (83.7%) of 49 from Sabah, and all 5 from Pahang. Only P. knowlesi DNA was detected in archival blood films from the 4 patients who died. All were hyperparasitemic and developed marked hepatorenal dysfunction.

    CONCLUSIONS: Human infection with P. knowlesi, commonly misidentified as the more benign P. malariae, are widely distributed across Malaysian Borneo and extend to Peninsular Malaysia. Because P. knowlesi replicates every 24 h, rapid diagnosis and prompt effective treatment are essential. In the absence of a specific routine diagnostic test for P. knowlesi malaria, we recommend that patients who reside in or have traveled to Southeast Asia and who have received a "P. malariae" hyperparasitemia diagnosis by microscopy receive intensive management as appropriate for severe falciparum malaria.

    Matched MeSH terms: Malaria/parasitology*
  6. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Malaria/parasitology
  7. Barber BE, William T, Dhararaj P, Anderios F, Grigg MJ, Yeo TW, et al.
    Malar J, 2012;11:401.
    PMID: 23216947 DOI: 10.1186/1475-2875-11-401
    The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo, with a particularly high incidence in Kudat, Sabah. Little is known however about the epidemiology in this substantially deforested region.
    Matched MeSH terms: Malaria/parasitology*
  8. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Malaria/parasitology*
  9. Faber BW, Abdul Kadir K, Rodriguez-Garcia R, Remarque EJ, Saul FA, Vulliez-Le Normand B, et al.
    PLoS One, 2015;10(4):e0124400.
    PMID: 25881166 DOI: 10.1371/journal.pone.0124400
    Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.
    Matched MeSH terms: Malaria/parasitology
  10. Pinheiro MM, Ahmed MA, Millar SB, Sanderson T, Otto TD, Lu WC, et al.
    PLoS One, 2015;10(4):e0121303.
    PMID: 25830531 DOI: 10.1371/journal.pone.0121303
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology.
    Matched MeSH terms: Malaria/parasitology
  11. Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL
    Exp Parasitol, 2015 Jun;153:118-22.
    PMID: 25812552 DOI: 10.1016/j.exppara.2015.03.010
    Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium  vivax and Plasmodium  ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.
    Matched MeSH terms: Malaria/parasitology
  12. Vythilingam I, Nitiavathy K, Yi P, Bakotee B, Hugo B, Singh B, et al.
    PMID: 10928352
    Dried Anopheles farauti mosquitos caught in Solomon Islands in 1990 were examined for malaria sporozoites by ELISA and nested polymerase chain reaction (PCR). Only heads and thoraces were used. Plasmodium genus-specific nested PCR amplifications were carried out on all samples. Of the 402 pools of mosquitos that were processed, 30 were positive for malaria. Nest 1 products of positive samples were subjected to further PCR amplifications with species-specific primers for P. falciparum and P. vivax. Twenty pools were positive for P. vivax by PCR while only 7 were positive by ELISA. For P. falciparum 2 pools were positive by both ELISA and PCR, and one of these was a pool which was positive for P. vivax by PCR and ELISA. Thus the sensitivity of PCR for P. vivax was 100% while the specificity was 96.7%. For P. falciparum the sensitivity and specificity were 100%. The PCR technique is highly sensitive and can be used on dried mosquitos which makes it a valuable tool for determining sporozoite rates of mosquitos, even in remote areas.
    Matched MeSH terms: Malaria/parasitology*
  13. Rahman WA, Che'Rus A, Ahmad AH
    PMID: 9561615
    Until today, malaria is still one of the most important diseases in Malaysia. This is because Malaysia is located within the equatorial zone with high temperatures and humidities, usually important for the transmission of malaria. The number of malaria cases were estimated to be around 300,000 before the launching of the Malaria Eradication Program (MEP). The program was successful in reducing the numbers progressively during the 1967-1982 period. During the period 1980-1991, the highest number of malaria cases recorded for the country was 65,283 in 1989 (16,902 in Peninsular Malaysia, 47,545 in Sabah and 836 in Sarawak) whilst the lowest was 22,218 (10,069 in Peninsular Malaysia, 11,290 in Sabah and 859 in Sarawak) in 1983. In Malaysia, there are 434 species of mosquitos, representing 20 genera. Of these, 75 species are Anopheles that comprise of 2 subgenus, i.e. Anopheles and Cellia. Of the 75 species, only 9 have been reported as vectors: An. maculatus, An balabacensis, An. dirus, An. letifer An. campestris, An. sundaicus, An. donaldi, An. leucophyrus and An. flavirostris. The behavior, seasonal abundance, biting activities and breeding sites of these species are discussed.
    Matched MeSH terms: Malaria/parasitology
  14. de Silva JR, Amir A, Lau YL, Ooi CH, Fong MY
    PLoS One, 2019;14(9):e0222681.
    PMID: 31536563 DOI: 10.1371/journal.pone.0222681
    The Duffy blood group plays a key role in Plasmodium knowlesi and Plasmodium vivax invasion into human erythrocytes. The geographical distribution of the Duffy alleles differs between regions with the FY*A allele having high frequencies in many Asian populations, the FY*B allele is found predominately in European populations and the FY*Bes allele found predominantly in African regions. A previous study in Peninsular Malaysia indicated high homogeneity of the dominant FY*A/FY*A genotype. However, the distribution of the Duffy genotypes in Malaysian Borneo is currently unknown. In the present study, the distribution of Duffy blood group genotypes and allelic frequencies among P. knowlesi infected patients as well as healthy individuals in Malaysian Borneo were determined. A total of 79 P. knowlesi patient blood samples and 76 healthy donor samples were genotyped using allele specific polymerase chain reaction (ASP-PCR). Subsequently a P. knowlesi invasion assay was carried out on FY*AB/ FY*A and FY*A/ FY*A Duffy genotype blood to investigate if either genotype conferred increased susceptibility to P. knowlesi invasion. Our results show almost equal distribution between the homozygous FY*A/FY*A and heterozygous FY*A/FY*B genotypes. This is in stark contrast to the Duffy distribution in Peninsular Malaysia and the surrounding Southeast Asian region which is dominantly FY*A/FY*A. The mean percent invasion of FY*A/FY*A and FY*A/FY*B blood was not significantly different indicating that neither blood group confers increased susceptibility to P. knowlesi invasion.
    Matched MeSH terms: Malaria/parasitology
  15. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2019 Oct;52(5):679-684.
    PMID: 31320238 DOI: 10.1016/j.jmii.2019.05.012
    Plasmodium knowlesi is now regarded as the fifth malaria parasite causing human malaria as it is widely distributed in South-East Asian countries especially east Malaysia where two Malaysian states namely Sabah and Sarawak are situated. In 2004, Polymerase Chain Reaction (PCR) was applied for diagnosing knowlesi malaria in the Kapit Division of Sarawak, Malaysia, so that human P. knowlesi infections could be detected correctly while blood film microscopy diagnosed incorrectly as Plasmodium malariae. This parasite is transmitted from simian hosts to humans via Anopheles vectors. Indonesia is the another country in South East Asia where knowlesi malaria is moderately prevalent. In the last decade, Sarawak and Sabah, the two states of east Malaysia became the target of P. knowlesi research due to prevalence of cases with occasional fatal infections. The host species of P. knowlesi are three macaque species namely Macaca fascicularis, Macaca nemestrina and Macaca leonina while the vector species are the Leucosphyrus Complex and the Dirus Complex of the Leucophyrus Group of Anopheles mosquitoes. Rapid diagnostic tests (RDT) are non-existent for knowlesi malaria although timely treatment is necessary for preventing complications, fatality and drug resistance. Development of RDT is essential in dealing with P. knowlesi infections in poor rural healthcare services. Genetic studies of the parasite on possibility of human-to-human transmission of P. knowlesi were recommended for further studies.
    Matched MeSH terms: Malaria/parasitology
  16. Ogunfowokan O, Ogunfowokan BA, Nwajei AI
    Afr J Prim Health Care Fam Med, 2020 Jun 17;12(1):e1-e8.
    PMID: 32634015 DOI: 10.4102/phcfm.v12i1.2212
    BACKGROUND: Malaria diagnosis using microscopy is currently the gold standard. However, malaria rapid diagnostic tests (mRDTs) were developed to simplify the diagnosis in regions without access to functional microscopy.

    AIM: The objective of this study was to compare the diagnostic accuracy of mRDT CareStatTM with microscopy.

    SETTING: This study was conducted in the paediatric primary care clinic of the Federal Medical Centre, Asaba, Nigeria.

    METHODS: A cross-sectional study for diagnostic accuracy was conducted from May 2016 to October 2016. Ninety-eight participants were involved to obtain a precision of 5%, sensitivity of mRDT CareStatTM of 95% from published work and 95% level of confidence after adjusting for 20% non-response rate or missing data. Consecutive participants were tested using both microscopy and mRDT. The results were analysed using EPI Info Version 7.

    RESULTS: A total of 98 children aged 3-59 months were enrolled. Malaria prevalence was found to be 53% (95% confidence interval [CI] = 46% - 60%), whilst sensitivity and specificity were 29% (95% CI = 20% - 38%) and 89% (95% CI = 83% - 95%), respectively. The positive and negative predictive values were 75% (95% CI = 66.4% - 83.6%) and 53% (95% CI = 46% - 60%), respectively.

    CONCLUSION: Agreement between malaria parasitaemia using microscopy and mRDT positivity increased with increase in the parasite density. The mRDT might be negative when malaria parasite density using microscopy is low.

    Matched MeSH terms: Malaria/parasitology
  17. Fong MY, Lau YL, Jelip J, Ooi CH, Cheong FW
    J Genet, 2019 Sep;98.
    PMID: 31544794
    Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkβII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkβII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkβII were performed on archived blood samples from Malaysia and 64 PkβII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkβII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkβII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkβII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.
    Matched MeSH terms: Malaria/parasitology
  18. Theint HT, Walsh JE, Wong ST, Voon K, Shitan M
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jul 05;218:348-358.
    PMID: 31026712 DOI: 10.1016/j.saa.2019.04.008
    A laboratory prototype system that correlates murine blood absorbance with degree of infection for Plasmodium berghei and Trypanosoma avensi has been designed, constructed and tested. A population (n = 6) of control uninfected, Plasmodium infected and Trypanosoma infected BALB/c mice were developed and spectral absorption measurements pre and post infection were made every 3 days. A fibre optic spectrometer set-up was used as the basis of a laboratory prototype biosensor that uses the Beer Lambert Law to relate Ultraviolet-Visible-Near-infrared absorbance data to changes in murine blood chemistry post infection. Spectral absorption results indicate a statistically relevant correlation at a 650 nm with infection for Plasmodium from between 4 and 7 sampling days' post infection, in spite of significant standard deviations among the sample populations for control and infected mice. No significant spectral absorption change for Trypanosoma infection was been detected from the current data. Corresponding stained slides of control and infected blood at each sampling date were taken with related infected cell counts determined and these correlate well for Plasmodium absorbance at 650 nm.
    Matched MeSH terms: Malaria/parasitology
  19. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Malaria/parasitology
  20. Loughland JR, Woodberry T, Oyong D, Piera KA, Amante FH, Barber BE, et al.
    Malar J, 2021 Feb 16;20(1):97.
    PMID: 33593383 DOI: 10.1186/s12936-021-03642-0
    BACKGROUND: Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection.

    METHODS: Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria.

    RESULTS: Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi.

    CONCLUSIONS: In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.

    Matched MeSH terms: Malaria/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links