Displaying publications 81 - 100 of 155 in total

Abstract:
Sort:
  1. Zulazmi NA, Gopalsamy B, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK
    Fitoterapia, 2015 Sep;105:215-21.
    PMID: 26205045 DOI: 10.1016/j.fitote.2015.07.011
    Neuropathic pain is a chronic condition that is difficult to be treated. Current therapies available are either ineffective or non-specific thus requiring newer treatment approaches. In this study, we investigated the antiallodynic and antihyperalgesic effects of zerumbone, a bioactive sesquiterpene from Zingiber zerumbet in chronic constriction injury (CCI)-induced neuropathic pain animal model. Our findings showed that single and repeated dose of intra-peritoneal administration of zerumbone (5, 10, 50, 100 mg/kg) significantly attenuated the CCI-induced neuropathic pain when evaluated using the electronic von Frey anesthesiometer, cold plate, Randall-Selitto analgesiometer and the Hargreaves plantar test. Zerumbone significantly alleviated tactile and cold allodynia as well as mechanical and thermal hyperalgesia. Our findings are in comparison to the positive control drugs thatused gabapentin (20 mg/kgi.p.) and morphine (1 mg/kgi.p.). Together, these results showed that the systemic administration of zerumbone produced marked antiallodynic and antihyperalgesic effects in the CCI-induced neuropathic pain in mice and may serve as a potential lead compound for further analysis.
    Matched MeSH terms: Mice, Inbred ICR
  2. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
    Matched MeSH terms: Mice, Inbred ICR
  3. Gopalsamy B, Sambasevam Y, Zulazmi NA, Chia JSM, Omar Farouk AA, Sulaiman MR, et al.
    Neurochem Res, 2019 Sep;44(9):2123-2138.
    PMID: 31376053 DOI: 10.1007/s11064-019-02850-0
    Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.
    Matched MeSH terms: Mice, Inbred ICR*
  4. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK
    Biomed Pharmacother, 2016 Oct;83:1303-1310.
    PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052
    Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
    Matched MeSH terms: Mice, Inbred ICR
  5. Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208700 DOI: 10.3390/molecules26123677
    Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.
    Matched MeSH terms: Mice, Inbred ICR
  6. Chia JSM, Farouk AAO, Mohamad TAST, Sulaiman MR, Zakaria H, Hassan NI, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202590 DOI: 10.3390/molecules26133849
    Neuropathic pain is a chronic pain condition persisting past the presence of any noxious stimulus or inflammation. Zerumbone, of the Zingiber zerumbet ginger plant, has exhibited anti-allodynic and antihyperalgesic effects in a neuropathic pain animal model, amongst other pharmacological properties. This study was conducted to further elucidate the mechanisms underlying zerumbone's antineuropathic actions. Research on therapeutic agents involving cannabinoid (CB) and peroxisome proliferator-activated receptors (PPARs) is rising. These receptor systems have shown importance in causing a synergistic effect in suppressing nociceptive processing. Behavioural responses were assessed using the von Frey filament test (mechanical allodynia) and Hargreaves plantar test (thermal hyperalgesia), in chronic constriction injury (CCI) neuropathic pain mice. Antagonists SR141716 (CB1 receptor), SR144528 (CB2 receptor), GW6471 (PPARα receptor) and GW9662 (PPARγ receptor) were pre-administered before the zerumbone treatment. Our findings indicated the involvement of CB1, PPARα and PPARγ in zerumbone's action against mechanical allodynia, whereas only CB1 and PPARα were involved against thermal hyperalgesia. Molecular docking studies also suggest that zerumbone has a comparable and favourable binding affinity against the respective agonist on the CB and PPAR receptors studied. This finding will contribute to advance our knowledge on zerumbone and its significance in treating neuropathic pain.
    Matched MeSH terms: Mice, Inbred ICR
  7. Lalani S, Tan SH, Tan KO, Lim HX, Ong KC, Wong KT, et al.
    Life Sci, 2021 Dec 15;287:120097.
    PMID: 34715144 DOI: 10.1016/j.lfs.2021.120097
    AIMS: Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model.

    MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71.

    KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs).

    SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.

    Matched MeSH terms: Mice, Inbred ICR
  8. Raju SS, Noor AR, Gurthu S, Giriyappanavar CR, Acharya SB, Low HC, et al.
    Pharmacol Res, 1999 Jun;39(6):451-4.
    PMID: 10373242
    There are no definite reports regarding the effects of chronic fluoxetine on animal models of epilepsy. Since chronically administered fluoxetine, in comparison to acutely administered fluoxetine has different effects on CNS, the present study was undertaken to investigate the effect of acute and chronic fluoxetine pretreatment, on a median anticonvulsant dose (ED50) of phenytoin in male ICR albino mice. Additionally, the effects of fluoxetine pretreatment on median convulsive current (CC50) in the presence and absence of phenytoin were investigated and results were compared. The maximal electroshock seizure (MES) test was used to estimate the ED50of phenytoin. The electroshock threshold test was used to estimate CC50. ED50and CC50values were calculated by probit analysis. The effects of the chronic and acute fluoxetine groups on the ED50of phenytoin were significantly different (P<0.05), and on CC50this difference was not statistically significant. Chronic fluoxetine insignificantly increased the ED50of phenytoin and decreased the CC50while acute fluoxetine decreased the ED50of phenytoin and increased the CC50. Our results indicate that chronic fluoxetine does not have an antiepileptic property and it may have dubious proconvulsant properties, contrary to acute fluoxetine.
    Matched MeSH terms: Mice, Inbred ICR
  9. Azman MS, Wan Saudi WS, Ilhami M, Mutalib MS, Rahman MT
    Nutr Neurosci, 2009 Feb;12(1):9-12.
    PMID: 19178786 DOI: 10.1179/147683009X388904
    Neurogenesis involves cell proliferation, cell cycle arrest, differentiation, migration and the natural developmental death of the neural precursors. These processes are highly co-ordinated and governed by cell-cycle genes and neural transcription factors. Zn plays a crucial role as a functional and structural component of enzymes and transcription factors and components of the intracellular signaling pathway associated with the regulation of cell proliferation. The influence of additional Zn intake during pregnancy on the neuronal proliferation at ventricular zone of the developing fetus has been studied. Pups delivered by the group of mice provided with drinking water with 4.0 mM Zn supplement throughout pregnancy contained an increased number of proliferating neurons in the ventricular zone at P0 compared to those delivered by the mice provided with drinking water without any Zn supplement. This finding provides direct evidence to support the notion that maternal Zn levels influence the development of the nervous system of the offspring.
    Matched MeSH terms: Mice, Inbred ICR
  10. Anuar NS, Zahari SS, Taib IA, Rahman MT
    Food Chem Toxicol, 2008 Jul;46(7):2384-9.
    PMID: 18468758 DOI: 10.1016/j.fct.2008.03.025
    The traditional use of papaya to treat many diseases, especially skin conditions and its prohibition for consumption during pregnancy has prompted us to determine whether papaya extracts both from green and ripe fruits improve wound healing and also produce foetal toxicity. Aqueous extracts of green papaya epicarp (GPE) and ripe papaya epicarp (RPE) were applied on induced wounds on mice. GPE treatment induced complete healing in shorter periods (13 days) than that required while using RPE (17 days), sterile water (18 days) and Solcoseryl ointment (21 days). Extracts were administered orally (1 mg/g body weight/day) to pregnant mice from day 10 and onwards after conception. 3 (n=7) mice and 1 (n=6) mice given RPE and misoprostol, an abortive drug, respectively experienced embryonic resorption while this effect was observed in none of the mice given GPE (n=5) and water (n=5). The average body weight of live pups delivered by mice given GPE (1.12+/-0.04 g) was significantly lower than those delivered by mice given water (1.38+/-0.02 g). In SDS-PAGE, proteins were distributed in three bands (Mr range approximately 8-29 kDa). Band intensity at Mr approximately 28-29 kDa was higher in GPE than in RPE. In contrast, band intensity at low Mr (approximately 8 kDa) was found to be higher in RPE than in GPE. Notably, the band corresponding to Mr approximately 23-25 kDa was absent in RPE. These differences in composition may have contributed to the different wound healing and abortive effects of green and ripe papaya.
    Matched MeSH terms: Mice, Inbred ICR
  11. Chow PW, Abdul Hamid Z, Chan KM, Inayat-Hussain SH, Rajab NF
    Toxicol Appl Pharmacol, 2015 Apr 1;284(1):8-15.
    PMID: 25645895 DOI: 10.1016/j.taap.2015.01.016
    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e(+) cells but reduced the total counts of Sca-1(+), CD11b(+), Gr-1(+), and CD45(+) cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage.
    Matched MeSH terms: Mice, Inbred ICR
  12. Musa NH, Mani V, Lim SM, Vidyadaran S, Abdul Majeed AB, Ramasamy K
    J Dairy Res, 2017 Nov;84(4):488-495.
    PMID: 29154736 DOI: 10.1017/S0022029917000620
    Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.
    Matched MeSH terms: Mice, Inbred ICR
  13. Bahrani H, Mohamad J, Paydar MJ, Rothan HA
    Curr Alzheimer Res, 2014 Feb;11(2):206-14.
    PMID: 24479629
    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD.
    Matched MeSH terms: Mice, Inbred ICR
  14. Nor Rashid N, Teoh TC, Al-Harbi SJ, Yusof R, Rothan HA
    Trop Biomed, 2021 Mar 01;38(1):36-41.
    PMID: 33797522 DOI: 10.47665/tb.38.1.007
    Chikungunya virus (CHIKV) infection is the cause of acute symptoms and chronic symmetrical polyarthritis associated with long-term morbidity and mortality. Currently, there is no available licensed vaccine or particularly useful drug for human use against CHIKV infection. This study was conducted to evaluate the efficacy of antibodies produced by papaya mosaic virus (PapMV) nanoparticles fused to E2EP3 peptide of CHIKV envelope as a recombinant CHIKV vaccine. PapMV, PapMV-C- E2EP3, and E2EP3-N-PapMV were produced in E. coli with an approximate size of 27 to 30 kDa. ICR mice (5 to 6 weeks of age) were injected subcutaneously with 25 micrograms of vaccine construct, and ELISA measured the titer of CHIKV specific IgG antibodies. The results showed that both recombinant proteins E2EP3-N-PapMV and PapMVC-E2EP3 were able to induce IgG antibodies production in immunized mice against CHIKV while immunization with recombinant PapMV showed no IgG antibodies induction. The neutralizing activity of the antibodies generated by either E2EP3-N-PapMV or PapMV-C-E2EP3 exhibited similar inhibition to CHIKV replication in Vero cells using the cells based antibody neutralizing assay and analyzed by plaque formation assay. This study showed the effectiveness of nanoparticles vaccine generated by fusing epitope peptide of CHIKV envelope to papaya mosaic virus envelope in inducing a robust immune response in mice against CHIKV. The data showed that levels of neutralizing antibodies correlate with a protective immune response CHIKV replication.
    Matched MeSH terms: Mice, Inbred ICR
  15. Mohammad MK, Mohamed MI, Zakaria AM, Abdul Razak HR, Saad WM
    Biomed Res Int, 2014;2014:512834.
    PMID: 24877107 DOI: 10.1155/2014/512834
    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.
    Matched MeSH terms: Mice, Inbred ICR
  16. Zakaria ZA, Mohd Sani MH, Cheema MS, Kader AA, Kek TL, Salleh MZ
    PMID: 24555641 DOI: 10.1186/1472-6882-14-63
    Muntingia calabura (Elaecoparceae) is a medicinal plant traditionally used, particularly, by the Peruvian people to alleviate headache and cold, pain associated with gastric ulcers or to reduce the prostate gland swelling. Following the recent establishment of antinociceptive activity of M. calabura leaf, the present study was performed to further elucidate on the possible mechanisms of antinociception involved.
    Matched MeSH terms: Mice, Inbred ICR
  17. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
    Matched MeSH terms: Mice, Inbred ICR
  18. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Mice, Inbred ICR
  19. Nassar I, Pasupati T, Judson JP, Segarra I
    Malays J Pathol, 2010 Jun;32(1):1-11.
    PMID: 20614720 MyJurnal
    Imatinib, a selective tyrosine kinase inhibitor, is the first line treatment against chronic myelogenous leukaemia (CML) and gastrointestinal stromal tumors (GIST). Several fatal cases have been associated with imatinib hepatotoxicity. Acetaminophen, an over-the-counter analgesic, anti-pyretic drug, which can cause hepatotoxicity, is commonly used in cancer pain management. We assessed renal and hepatic toxicity after imatinib and acetaminophen co-administration in a preclinical model. Four groups of male ICR mice (30-35 g) were fasted overnight and administered either saline solution orally (baseline control), imatinib 100 mg/kg orally (control), acetaminophen 700 mg/kg intraperitoneally (positive control) or co-administered imatinib 100 mg/kg orally and acetaminophen 700 mg/kg intraperitoneally (study group), and sacrificed at 15 min, 30 min, 1 h, 2 h, 4 h and 6 h post-administration (n = 4 per time point). The liver and kidneys were harvested for histopathology assessment. The liver showed reversible cell damage like feathery degeneration, microvesicular fatty change, sinusoidal congestion and pyknosis, when imatinib or acetaminophen were administered separately. The damage increased gradually with time, peaked at 2 h but resolved by 4 h. When both drugs were administered concurrently, the liver showed irreversible damage (cytolysis, karyolysis and karyorrhexis) which did not resolve by 6 h. Very minor renal changes were observed. Acetaminophen and imatinib co-administration increased hepatoxicity which become irreversible, probably due to shared P450 biotransformation pathways and transporters in the liver.
    Matched MeSH terms: Mice, Inbred ICR
  20. Soo GW, Law JH, Kan E, Tan SY, Lim WY, Chay G, et al.
    Anticancer Drugs, 2010 Aug;21(7):695-703.
    PMID: 20629201
    Imatinib, a selective inhibitor of c-KIT and Bcr-Abl tyrosine kinases, approved for the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors, shows further therapeutic potential for gliomas, glioblastoma, renal cell carcinoma, autoimmune nephritis and other neoplasms. It is metabolized by CYP3A4, is highly bound to alpha-1-acid glycoprotein and is a P-glycoprotein substrate limiting its brain distribution. We assess imatinib's protein binding interaction with primaquine, which also binds to alpha-1-acid glycoprotein, and its metabolic interaction with ketoconazole, which is a CYP3A4 inhibitor, on its pharmacokinetics and biodistribution. Male ICR mice, 9-12 weeks old were given imatinib PO (50 mg/kg) alone or co-administered with primaquine (12.5 mg/kg), ketoconazole (50 mg/kg) or both, and imatinib concentration in the plasma, kidney, liver and brain was measured at prescheduled time points by HPLC. Noncompartmental pharmacokinetic parameters were estimated. Primaquine increased 1.6-fold plasma AUC(0)--> infinity, C(Max) decreased 24%, T(Max) halved and t(1/2) and mean residence time were longer. Ketoconazole increased plasma AUC(0)-->infinity 64% and doubled the C(Max), but this dose did not affect t(1/2) or mean residence time. When ketoconazole and primaquine were co-administered, imatinib AUC(0)-->infinity and C(Max) increased 32 and 35%, respectively. Ketoconazole did not change imatinib's distribution efficiency in the liver and kidney, primaquine increased it two-fold and it was larger when both the drugs were co-administered with imatinib. Ketoconazole did not change brain penetration but primaquine increased it approximately three-fold. Ketoconazole and primaquine affect imatinib clearance, bioavailability and distribution pattern, which could improve the treatment of renal and brain tumors, but also increase toxicity. This would warrant hepatic and renal functions monitoring.
    Matched MeSH terms: Mice, Inbred ICR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links