Displaying publications 81 - 100 of 799 in total

Abstract:
Sort:
  1. Al-Salahi R, Ahmad R, Anouar E, Iwana Nor Azman NI, Marzouk M, Abuelizz HA
    Future Med Chem, 2018 08 01;10(16):1889-1905.
    PMID: 29882426 DOI: 10.4155/fmc-2018-0141
    AIM: Using a simple modification on a previously reported synthetic route, 3-benzyl(phenethyl)-2-thioxobenzo[g]quinazolin-4(3H)-ones (1 and 2) were synthesized with high yields. Further transformation of 1 and 2 produced derivatives 3-26, which were structurally characterized based on NMR and MS data, and their in vitro α-glucosidase inhibitory activity was evaluated using Baker's yeast α-glucosidase enzyme.

    RESULTS: Compounds 2, 4, 8, 12 and 20 exhibited the highest activity (IC50 = 69.20, 59.60, 49.40, 50.20 and 83.20 μM, respectively) compared with the standard acarbose (IC50 = 143.54 μM).

    CONCLUSION: A new class of potent α-glucosidase inhibitors was identified, and the molecular docking predicted plausible binding interaction of the targets in the binding pocket of α-glucosidase and rationalized the structure-activity relationship (SARs) of the target compounds.

    Matched MeSH terms: Molecular Structure
  2. AlMatar M, Albarri O, Makky EA, Var I, Köksal F
    Mini Rev Med Chem, 2020;20(18):1908-1916.
    PMID: 32811410 DOI: 10.2174/1389557520666200818211405
    The need for new therapeutics and drug delivery systems has become necessary owing to the public health concern associated with the emergence of multidrug-resistant microorganisms. Among the newly discovered therapeutic agents is cefiderocol, which was discovered by Shionogi Company, Japan as an injectable siderophore cephalosporin. Just like the other β-lactam antibiotics, cefiderocol exhibits antibacterial activity via cell wall synthesis inhibition, especially in Gram negative bacteria (GNB); it binds to the penicillin-binding proteins, but its unique attribute is that it crosses the periplasmic space of bacteria owing to its siderophore-like attribute; it also resists the activity of β-lactamases. Among all the synthesized compounds with the modified C-7 side chain, cefiderocol (3) presented the best and well-balanced activity against multi-drug resistant (MDR) Gram negative bacteria, including those that are resistant to carbapenem. İn this article, an overview of the recent studies on cefiderocol was presented.
    Matched MeSH terms: Molecular Structure
  3. Alasmary FAS, Alnahdi FS, Ben Bacha A, El-Araby AM, Moubayed N, Alafeefy AM, et al.
    J Enzyme Inhib Med Chem, 2017 Dec;32(1):1143-1151.
    PMID: 28856929 DOI: 10.1080/14756366.2017.1363743
    Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.
    Matched MeSH terms: Molecular Structure
  4. Algamal ZY, Lee MH, Al-Fakih AM, Aziz M
    SAR QSAR Environ Res, 2016 Sep;27(9):703-19.
    PMID: 27628959 DOI: 10.1080/1062936X.2016.1228696
    In high-dimensional quantitative structure-activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthermore, the local linear approximation algorithm is utilized to avoid the non-convexity of the proposed method. The potential applicability of the proposed method is tested on several benchmark data sets. Compared with other commonly used penalized methods, the proposed method can not only obtain the best predictive ability, but also provide an easily interpretable QSAR model. In addition, it is noteworthy that the results obtained in terms of applicability domain and Y-randomization test provide an efficient and a robust QSAR model. It is evident from the results that the proposed method may possibly be a promising penalized method in the field of computational chemistry research, especially when the number of molecular descriptors exceeds the number of compounds.
    Matched MeSH terms: Molecular Structure
  5. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Molecular Structure
  6. Ali F, Khan KM, Salar U, Taha M, Ismail NH, Wadood A, et al.
    Eur J Med Chem, 2017 Sep 29;138:255-272.
    PMID: 28672278 DOI: 10.1016/j.ejmech.2017.06.041
    Acarbose, miglitol, and voglibose are the inhibitors of α-glucosidase enzyme and being clinically used for the management of type-II diabetes mellitus. However, many adverse effects are also associated with them. So, the development of new therapeutic agents is an utmost interest in medicinal chemistry research. Current study is based on the identification of new α-glucosidase inhibitors. For that purpose, hydrazinyl arylthiazole based pyridine derivatives 1-39 were synthesized via two step reaction and fully characterized by spectroscopic techniques EI-MS, HREI-MS, (1)H-, and (13)C NMR. However, stereochemistry of the iminic bond was confirmed by NOESY. All compounds were subjected to in vitro α-glucosidase inhibitory activity and found many folds active (IC50 = 1.40 ± 0.01-236.10 ± 2.20 μM) as compared to the standard acarbose having IC50 value of 856.45 ± 5.60 μM. A limited structure-activity relationship was carried out in order to make a presumption about the substituent's effect on inhibitory activity which predicted that substituents of more negative inductive effect played important role in the activity as compared to the substituents of less negative inductive effect. However, in order to have a good understanding of ligand enzyme interactions, molecular docking study was also conducted. In silico study was confirmed that substituents like halogens (Cl) and nitro (NO2) which have negative inductive effect were found to make important interactions with active site residues.
    Matched MeSH terms: Molecular Structure
  7. Ali MA, Ismail R, Choon TS, Pandian S, Hassan Ansari MZ
    J Enzyme Inhib Med Chem, 2011 Aug;26(4):598-602.
    PMID: 21714764 DOI: 10.3109/14756366.2010.529805
    In this study, a series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized and evaluated for antimycobacterial activity against Mycobacterium tuberculosis (MTB) H(37)Rv and isoniazid resistant M. tuberculosis (INHR-MTB). All the newly synthesized compounds were showing moderate to high inhibitory activities. The compound 6,7-dimethoxy-3-(4-chloro phenyl)-4H-indeno[1,2-c]isoxazole (4b) was found to be the most promising compound, active against MTB H(37)Rv and INHR-MTB with minimum inhibitory concentrations of 0.22 and 0.34 μM.
    Matched MeSH terms: Molecular Structure
  8. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Acta Pol Pharm, 2011 May-Jun;68(3):343-8.
    PMID: 21648188
    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.
    Matched MeSH terms: Molecular Structure
  9. Ali MA, Bastian S, Ismail R, Choon TS, Ali S, Aubry A, et al.
    J Enzyme Inhib Med Chem, 2011 Dec;26(6):890-4.
    PMID: 21395486 DOI: 10.3109/14756366.2011.559945
    A series of pyrazoline derivatives were synthesized and in vitro activity against Mycobacterium tuberculosis H37Rv was carried out. Among the synthesized compounds, compounds (4d) and (4f) 4-aminophenyl-3-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone and 4-aminophenyl-6,7-dimethoxy-3-phenyl-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone were found to be the most active agent against M. tuberculosis H37Rv with a minimum inhibitory concentration of 10 μg/mL.
    Matched MeSH terms: Molecular Structure
  10. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Bioorg Med Chem Lett, 2010 Dec 1;20(23):7064-6.
    PMID: 20951037 DOI: 10.1016/j.bmcl.2010.09.108
    Series of pyrolidine analogues were synthesized and examined as acetylcholinesterase (AChE) inhibitors. Among the compounds, compounds 4k and 6k were the most potent inhibitors of the series. Compound 4k, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.10 μmol/L. Pyrolidine analogues might be potential acetyl cholinesterase agents for AD.
    Matched MeSH terms: Molecular Structure
  11. Alias A, Hazni H, Jaafar FM, Awang K, Ismail NH
    Molecules, 2010 Jul;15(7):4583-8.
    PMID: 20657378 DOI: 10.3390/molecules15074583
    A phytochemical study of the bark of Fissistigma latifolium (Annonaceae) yielded a new aporphine alkaloid, (-)-N-methylguattescidine (1), and eight known alkaloids: liriodenine (2), oxoxylopine (3), (-)-asimilobine (4), dimethyltryptamine (5), (-)-remerine (6), (-)-anonaine (7), columbamine (8) and lysicamine (9). The compounds were isolated using various chromatographic methods and structural elucidation was accomplished by means of spectroscopic methods, notably 1D-NMR ((1)H, (13)C, DEPT), 2D-NMR (COSY, HMQC, HMBC), UV, IR and MS.
    Matched MeSH terms: Molecular Structure
  12. Aljohani G, Said MA, Lentz D, Basar N, Albar A, Alraqa SY, et al.
    Molecules, 2019 Feb 07;24(3).
    PMID: 30736403 DOI: 10.3390/molecules24030590
    An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P2₁/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.
    Matched MeSH terms: Molecular Structure
  13. Almandil NB, Taha M, Rahim F, Wadood A, Imran S, Alqahtani MA, et al.
    Bioorg Chem, 2019 04;85:109-116.
    PMID: 30605884 DOI: 10.1016/j.bioorg.2018.12.025
    New series of quinoline-based thiadiazole analogs (1-20) were synthesized, characterized by EI-MS, 1H NMR and 13C NMR. All synthesized compounds were subjected to their antileishmanial potential. Sixteen analogs 1-10, 12, 13, 16, 17, 18 and 19 with IC50 values in the range of 0.04 ± 0.01 to 5.60 ± 0.21 µM showed tremendously potent inhibition as compared to the standard pentamidine with IC50 value 7.02 ± 0.09 µM. Analogs 11, 14, 15 and 20 with IC50 8.20 ± 0.35, 9.20 ± 0.40, 7.20 ± 0.20 and 9.60 ± 0.40 µM respectively showed good inhibition when compared with the standard. Structure-activity relationships have been also established for all compounds. Molecular docking studies were performed to determine the binding interaction of the compounds with the active site target.
    Matched MeSH terms: Molecular Structure
  14. Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, et al.
    Bioorg Chem, 2019 11;92:103235.
    PMID: 31494327 DOI: 10.1016/j.bioorg.2019.103235
    Hybrid bis-coumarin derivatives 1-18 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure-activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.
    Matched MeSH terms: Molecular Structure
  15. Alomari M, Taha M, Rahim F, Selvaraj M, Iqbal N, Chigurupati S, et al.
    Bioorg Chem, 2021 03;108:104638.
    PMID: 33508679 DOI: 10.1016/j.bioorg.2021.104638
    A series of nineteen (1-19) indole-based-thiadiazole derivatives were synthesized, characterized by 1HNMR, 13C NMR, MS, and screened for α-glucosidase inhibition. All analogs showed varied α-glucosidase inhibitory potential with IC50 value ranged between 0.95 ± 0.05 to 13.60 ± 0.30 µM, when compared with the standard acarbose (IC50 = 1.70 ± 0.10). Analogs 17, 2, 1, 9, 7, 3, 15, 10, 16, and 14 with IC50 values 0.95 ± 0.05, 1.10 ± 0.10, 1.30 ± 0.10, 1.60 ± 0.10, 2.30 ± 0.10, 2.30 ± 0.10, 2.80 ± 0.10, 4.10 ± 0.20 and 4.80 ± 0.20 µM respectively showed highest α-glucosidase inhibition. All other analogs also exhibit excellent inhibitory potential. Structure activity relationships have been established for all compounds primarily based on substitution pattern on the phenyl ring. Through molecular docking study, binding interactions of the most active compounds were confirmed. We further studied the kinetics study of analogs 1, 2, 9 and 17 and found that they are Non-competitive inhibitors.
    Matched MeSH terms: Molecular Structure
  16. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Molecular Structure
  17. Altamimi AS, Alafeefy AM, Balode A, Vozny I, Pustenko A, El Shikh ME, et al.
    J Enzyme Inhib Med Chem, 2018 Dec;33(1):147-150.
    PMID: 29199484 DOI: 10.1080/14756366.2017.1404593
    A series of symmetric molecules incorporating aryl or pyridyl moieties as central core and 1,4-substituted triazoles as a side bridge was synthesised. The new compounds were investigated as lactate dehydro-genase (LDH, EC 1.1.1.27) inhibitors. The cancer associated LDHA isoform was inhibited with IC50 = 117-174 µM. Seven compounds exhibited better LDHA inhibition (IC50 117-136 µM) compared to known LDH inhibitor - galloflavin (IC50 157 µM).
    Matched MeSH terms: Molecular Structure
  18. Amid BT, Mirhosseini H, Kostadinović S
    Chem Cent J, 2012 Oct 14;6(1):117.
    PMID: 23062269 DOI: 10.1186/1752-153X-6-117
    BACKGROUND: The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn).

    RESULTS: The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%).

    CONCLUSION: The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

    Matched MeSH terms: Molecular Structure
  19. Aminimoghadamfarouj N, Nematollahi A, Wiart C
    J Asian Nat Prod Res, 2011 May;13(5):465-76.
    PMID: 21534046 DOI: 10.1080/10286020.2011.570265
    One of the rich sources of lead compounds is the Angiosperms. Many of these lead compounds are useful medicines naturally, whereas others have been used as the basis for synthetic agents. These are potent and effective compounds, which have been obtained from plants, including anti-cancer (cytotoxic) agents, anti-malaria (anti-protozoal) agents, and anti-bacterial agents. Today, the number of plant families that have been extensively studied is relatively very few and the vast majorities have not been studied at all. The Annonaceae is the largest family in the order Magnoliales. It includes tropical trees, bushes, and climbers, which are often used as traditional remedies in Southeast Asia. Members of the Annonaceae have the particularity to elaborate a broad spectrum of natural products that have displayed anti-bacterial, anti-fungal, and anti-protozoal effects and have been used for the treatment of medical conditions, such as skin diseases, intestinal worms, inflammation of the eyes, HIV, and cancer. These special effects and the vast range of variation in potent compounds make the Annonaceae unique from other similar families in the Magnoliales and the Angiosperms in general. This paper attempts to summarize some important information and discusses a series of hypotheses about the effects of Annonaceae compounds.
    Matched MeSH terms: Molecular Structure
  20. Aminudin NI, Ridzuan M, Susanti D, Zainal Abidin ZA
    J Asian Nat Prod Res, 2022 Feb;24(2):103-145.
    PMID: 33783284 DOI: 10.1080/10286020.2021.1906657
    Sesquiterpenoids have been identified as natural compounds showing remarkable biological activities found in medicinal plants. There is great interest in developing methods to obtain sesquiterpenoids derivatives and biotransformation is one of the alternative methods for structural modification of complex sesquiterpenes structures. Biotransformation is a great drug design tool offering high selectivity and green method. The present review describes a comprehensive summary of biotransformation products of sesquiterpenoids and its structural modification utilizing a variety of biocatalysts including microorganisms, plant tissue culture and enzymes. This review covers recent literatures from 2007 until 2020 and highlights the experimental conditions for each biotransformation process.
    Matched MeSH terms: Molecular Structure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links