Displaying publications 81 - 100 of 1333 in total

Abstract:
Sort:
  1. Pirouz AA, Selamat J, Iqbal SZ, Mirhosseini H, Karjiban RA, Bakar FA
    Sci Rep, 2017 Sep 29;7(1):12453.
    PMID: 28963539 DOI: 10.1038/s41598-017-12341-3
    Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
    Matched MeSH terms: Magnetite Nanoparticles/ultrastructure; Magnetite Nanoparticles/chemistry*
  2. Ashley J, Shukor Y, Tothill IE
    Analyst, 2016 Nov 14;141(23):6463-6470.
    PMID: 27813538
    The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO
    Matched MeSH terms: Nanoparticles
  3. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS
    Nanomedicine, 2017 Nov;13(8):2661-2669.
    PMID: 28800874 DOI: 10.1016/j.nano.2017.07.017
    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.
    Matched MeSH terms: Nanoparticles/therapeutic use*; Nanoparticles/ultrastructure
  4. Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF
    PLoS One, 2021;16(11):e0259730.
    PMID: 34748606 DOI: 10.1371/journal.pone.0259730
    An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
    Matched MeSH terms: Metal Nanoparticles
  5. Toh PY, Ng BW, Ahmad AL, Chieh DC, Lim J
    Nanoscale, 2014 Nov 7;6(21):12838-48.
    PMID: 25227473 DOI: 10.1039/c4nr03121k
    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
    Matched MeSH terms: Nanoparticles/chemistry*; Metal Nanoparticles/chemistry
  6. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
    Matched MeSH terms: Nanoparticles*
  7. Danial WH, Abdul Majid Z, Mohd Muhid MN, Triwahyono S, Bakar MB, Ramli Z
    Carbohydr Polym, 2015 Mar 15;118:165-9.
    PMID: 25542122 DOI: 10.1016/j.carbpol.2014.10.072
    The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs.
    Matched MeSH terms: Nanoparticles/chemistry*
  8. Azlin-Hasim S, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA
    J Colloid Interface Sci, 2016 Jan 01;461:239-248.
    PMID: 26402783 DOI: 10.1016/j.jcis.2015.09.021
    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  9. Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, et al.
    Heliyon, 2019 Oct;5(10):e02544.
    PMID: 31687479 DOI: 10.1016/j.heliyon.2019.e02544
    Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
    Matched MeSH terms: Nanoparticles
  10. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, et al.
    PLoS One, 2019;14(3):e0214212.
    PMID: 30917166 DOI: 10.1371/journal.pone.0214212
    It has been demonstrated that nanocrystalline forsterite powder synthesised using urea as a fuel in sol-gel combustion method had produced a pure forsterite (FU) and possessed superior bioactive characteristics such as bone apatite formation and antibacterial properties. In the present study, 3D-scaffold was fabricated using nanocrystalline forsterite powder in polymer sponge method. The FU scaffold was used in investigating the physicochemical, biomechanics, cell attachment, in vitro biocompatibility and osteogenic differentiation properties. For physicochemical characterisation, Fourier-transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoemission spectrometer (XPS) and Brunauer-Emmett-Teller (BET) were used. FTIR, EDX, XRD peaks and Raman spectroscopy demonstrated correlating to FU. The XPS confirmed the surface chemistry associating to FU. The BET revealed FU scaffold surface area of 12.67 m2/g and total pore size of 0.03 cm3/g. Compressive strength of the FU scaffold was found to be 27.18 ± 13.4 MPa. The human bone marrow derived mesenchymal stromal cells (hBMSCs) characterisation prior to perform seeding on FU scaffold verified the stromal cell phenotypic and lineage commitments. SEM, confocal images and presto blue viability assay suggested good cell attachment and proliferation of hBMSCs on FU scaffold and comparable to a commercial bone substitutes (cBS). Osteogenic proteins and gene expression from day 7 onward indicated FU scaffold had a significant osteogenic potential (p<0.05), when compared with day 1 as well as between FU and cBS. These findings suggest that FU scaffold has a greater potential for use in orthopaedic and/or orthodontic applications.
    Matched MeSH terms: Nanoparticles/chemistry*
  11. Mansur S, Ishak A, Pop I
    PLoS One, 2015;10(3):e0117733.
    PMID: 25760733 DOI: 10.1371/journal.pone.0117733
    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.
    Matched MeSH terms: Nanoparticles/chemistry*
  12. Ma Y, Fuchs AV, Boase NR, Rolfe BE, Coombes AG, Thurecht KJ
    Eur J Pharm Biopharm, 2015 Aug;94:393-403.
    PMID: 26117186 DOI: 10.1016/j.ejpb.2015.06.014
    Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan-hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8h to 24h post-administration compared to the free NPs, due to a NP 'guarding' effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems.
    Matched MeSH terms: Nanoparticles/chemistry*
  13. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS
    Nanotechnology, 2012 Dec 14;23(49):495719.
    PMID: 23164811 DOI: 10.1088/0957-4484/23/49/495719
    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  15. Hezaveh H, Muhamad II
    Carbohydr Polym, 2012 Jun 5;89(1):138-45.
    PMID: 24750615 DOI: 10.1016/j.carbpol.2012.02.062
    In this article, silver and magnetite nanofillers were synthesized in modified κ-carrageenan hydrogels using the in situ method. The effect of metallic nanoparticles in gastro-intestinal tract (GIT) release of a model drug (methylene blue) has been investigated. The effect of nanoparticles loading and genipin cross-linking on GIT release of nanocomposite is also studied to finally provide the most suitable drug carrier system. In vitro release studies revealed that using metallic nanocomposites hydrogels in GIT studies can improve the drug release in intestine and minimize it in the stomach. It was found that cross-linking and nanofiller loading can significantly improve the targeted release. Therefore, applying metallic nanoparticles seems to be a promising strategy to develop GIT controlled drug delivery.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  16. Zamiri R, Zakaria A, Ahangar HA, Darroudi M, Zamiri G, Rizwan Z, et al.
    Int J Nanomedicine, 2013;8:233-44.
    PMID: 23345971 DOI: 10.2147/IJN.S36036
    Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver-starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a bandwidth of ~6 nm 'full width at half maximum' (FWHM). Stability measurements showed no significant changes in mean particle size or agglomeration or even flocculation. However, zeta potential measurements showed that optimal double layer charge is achieved at 30 Hz. Consequently, Ag-NP synthesis via the laser ablation synthesis in solution (LASiS) method in starch solution seems to be a trade-off between small size and narrow size distributions and inherent and long-term stability.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  17. Pan Y, Ong CE, Pung YF, Chieng JY
    Xenobiotica, 2019 Jul;49(7):863-876.
    PMID: 30028220 DOI: 10.1080/00498254.2018.1503360
    Nanoparticles (NPs) have wide spectrum applications in the areas of industry and biomedicine. However, concerns about their toxic and negative impacts on the environments as well as human health have been raised. Cytochrome P450s (CYPs) are involved in endogenous and exogenous metabolism. Modulations of CYP can adversely damage drug metabolism, detoxification of xenobiotics and animal physiology functions. This article focused on NPs-CYP interactions for humans and animals available in the literature. It was found that different NPs process specific inhibitory potencies against CYPs involved in drug metabolism. Moreover, NPs were able to modify the expression of CYPs genes or protein in humans and other animals, which highlighted their detoxification functions. Nonetheless, changes of CYPs responsible for hormone synthesis and metabolism resulted in endocrine disturbances. Hence, there is a need to screen newly developed NPs to evaluate their interactions with CYPs. The future studies should further strategize the in vitro approaches to reveal the molecular mechanisms behind interactions by taking full considerations of the interference of co-factors, buffers, substrates and metabolites with NPs. Moreover, in vivo studies should compare the influences of NPs via different administration routes and different duration of treatments to reveal the physiological significance.
    Matched MeSH terms: Nanoparticles
  18. Tang KS
    Life Sci, 2019 Dec 15;239:117011.
    PMID: 31669241 DOI: 10.1016/j.lfs.2019.117011
    Diabetes mellitus (DM) is a multifaceted and costly disease, which requires serious attention. Finding a cheaper anti-diabetic alternative that can act on multiple disease-related targets and pathways is the ultimate treatment goal for DM. Nanotechnology has offered some exciting possibilities in biomedical and drug delivery applications. Zinc oxide nanoparticles (ZnO-NPs), a novel agent to deliver zinc, have great implications in many disease therapies including DM. This review summarizes the pharmacological mechanisms by which ZnO-NPs alleviate DM and diabetic complications. Research implications and future perspectives were also discussed.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  19. Chindera K, Mahato M, Kumar Sharma A, Horsley H, Kloc-Muniak K, Kamaruzzaman NF, et al.
    Sci Rep, 2016;6:23121.
    PMID: 26996206 DOI: 10.1038/srep23121
    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.
    Matched MeSH terms: Nanoparticles
  20. Astuti SD, Puspita PS, Putra AP, Zaidan AH, Fahmi MZ, Syahrom A, et al.
    Lasers Med Sci, 2019 Jul;34(5):929-937.
    PMID: 30413898 DOI: 10.1007/s10103-018-2677-4
    Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links